Skip to main content

Advertisement

Log in

Evolutionary Behaviour, Trade-Offs and Cyclic and Chaotic Population Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many studies of the evolution of life-history traits assume that the underlying population dynamical attractor is stable point equilibrium. However, evolutionary outcomes can change significantly in different circumstances. We present an analysis based on adaptive dynamics of a discrete-time demographic model involving a trade-off whose shape is also an important determinant of evolutionary behaviour. We derive an explicit expression for the fitness in the cyclic region and consequently present an adaptive dynamic analysis which is algebraic. We do this fully in the region of 2-cycles and (using a symbolic package) almost fully for 4-cycles. Simulations illustrate and verify our results. With equilibrium population dynamics, trade-offs with accelerating costs produce a continuously stable strategy (CSS) whereas trade-offs with decelerating costs produce a non-ES repellor. The transition to 2-cycles produces a discontinuous change: the appearance of an intermediate region in which branching points occur. The size of this region decreases as we move through the region of 2-cycles. There is a further discontinuous fall in the size of the branching region during the transition to 4-cycles. We extend our results numerically and with simulations to higher-period cycles and chaos. Simulations show that chaotic population dynamics can evolve from equilibrium and vice-versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boldin, B., Geritz, S. A. H., & Kisdi, É. (2009). Superinfections and adaptive dynamics of pathogen virulence revisited: a critical function analysis. Evol. Ecol. Res., 11, 153–175.

    Google Scholar 

  • Boots, M., & Haraguchi, Y. (1999). The evolution of costly resistance in host-parasite systems. Am. Nat., 153, 359–370.

    Article  Google Scholar 

  • Bowers, R. G., White, A., Boots, M., Geritz, S. A. H., & Kisdi, E. (2003). Evolutionary branching/speciation: contrasting results from systems with explicit or emergent carrying capacities. Evol. Ecol. Res., 5, 883–891.

    Google Scholar 

  • Bowers, R. G., Hoyle, A., White, A., & Boots, M. (2005). The geometric theory of adaptive evolution: trade-off and invasion plots. J. Theor. Biol., 233, 363–377.

    Article  MathSciNet  Google Scholar 

  • Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A., & Henson, S. M. (2003). Chaos in ecology [electronic resource]: experimental nonlinear dynamics. Amsterdam: Academic Press.

    Google Scholar 

  • De Mazancourt, C., & Dieckmann, U. (2004). Trade-off geometries and frequency-dependent selection. Am. Nat., 164, 765–778.

    Article  Google Scholar 

  • Doebeli, M., & Koella, J. C. (1995). Evolution of simple population-dynamics. Proc. R. Soc. Lond. Ser. B, Biol. Sci., 260, 119–125.

    Article  Google Scholar 

  • Ebenman, B., Johansson, A., Jonsson, T., & Wennergren, U. (1996). Evolution of stable population dynamics through natural selection. Proc. R. Soc. Lond., Ser. B, Biol. Sci., 263, 1145–1151.

    Article  Google Scholar 

  • Eckmann, J. P., & Ruelle, D. (1985). Ergodic-theory of chaos and strange attractors. Rev. Mod. Phys., 57, 617–656.

    Article  MathSciNet  Google Scholar 

  • Ferriere, R., & Gatto, M. (1993). Chaotic population-dynamics can result from natural-selection. Proc. R. Soc. Lond., Ser. B, Biol. Sci., 251, 33–38.

    Article  Google Scholar 

  • Gatto, M. (1993). The evolutionary optimality of oscillatory and chaotic dynamics in simple population-models. Theor. Popul. Biol., 43, 310–336.

    Article  MATH  Google Scholar 

  • Geritz, S. A. H., Kisdi, E., Meszena, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Geritz, S. A. H., Kisdi, E., & Yan, P. (2007). Evolutionary branching and long-term coexistence of cycling predators: critical function analysis. Theor. Popul. Biol., 71, 424–435.

    Article  MATH  Google Scholar 

  • Greenman, J. V., Benton, T. G., Boots, M., & White, A. R. (2005). The evolution of oscillatory behavior in age-structured species. Am. Nat., 166, 68–78.

    Article  Google Scholar 

  • Gurney, W. S. C., & Nisbet, R. M. (1998). Ecological dynamics. New York: Oxford University Press.

    Google Scholar 

  • Katok, A., & Hasselblatt, B. (1995). Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kisdi, E. (2001). Long-term adaptive diversity in Levene-type models. Evol. Ecol. Res., 3, 721–727.

    Google Scholar 

  • Levins, R. (1962). Theory of fitness in a heterogeneous environment 1. Fitness set and adaptive function. Am. Nat., 96, 361.

    Article  Google Scholar 

  • May, R. M. (1975). Deterministic models with chaotic dynamics. Nature, 256, 165–166.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define fitness for general ecological scenarios. Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Metz, J. A. J., Geritz, S. A. H., Meszena, G., Jacobs, F. J. A., & Van Heerwaarden, J. S. (1996). Adaptive dynamics: a geometric study of the consequences of nearly faithful reproduction. In: S.J.M. Van Strien & S.M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland.

    Google Scholar 

  • Mueller, L. D., Joshi, A., & Borash, D. J. (2000). Does population stability evolve? Ecology, 81, 1273–1285.

    Article  Google Scholar 

  • Prasad, N. G., & Joshi, A. (2003). What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J. Genet., 82, 45–76.

    Article  Google Scholar 

  • Roff, D. A. (2002). Life history evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Rueffler, C., Van Dooren, T. J. M., & Metz, J. A. J. (2004). Adaptive walks on changing landscapes: Levins’ approach extended. Theor. Popul. Biol., 65, 165–178.

    Article  MATH  Google Scholar 

  • Schaffer, W. M. (1974). Selection for optimal life histories—effects of age structure. Ecology, 55, 291–303.

    Article  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Svennungsen, T. O. & Kisdi, É. (2009). Evolutionary branching of virulence in a single infection model. J. Theor. Biol., 257, 408–418.

    Article  Google Scholar 

  • White, A., & Bowers, R. G. (2005). Adaptive dynamics of Lotka-Volterra systems with trade-offs: the role of interspecific parameter dependence in branching. Math. Biosci., 193, 101–117.

    Article  MATH  MathSciNet  Google Scholar 

  • White, A., Greenman, J. V., Benton, T. G., & Boots, M. (2006). Evolutionary behaviour in ecological systems with trade-offs and non-equilibrium population dynamics. Evol. Ecol. Res., 8, 387–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Hoyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyle, A., Bowers, R.G. & White, A. Evolutionary Behaviour, Trade-Offs and Cyclic and Chaotic Population Dynamics. Bull Math Biol 73, 1154–1169 (2011). https://doi.org/10.1007/s11538-010-9567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9567-7

Keywords

Navigation