Skip to main content

Advertisement

Log in

Evolution Stabilises the Synchronising Dynamics of Poikilotherm Life Cycles

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Temperature is the most significant factor controlling developmental timing of most temperate poikilotherms. In the face of climate change, a crucial question is how will poikilothermic organisms evolve when faced with changing thermal environments? In this paper, we integrate models for developmental timing and quantitative genetics. A simple model for determining developmental milestones (emergence times, egg hatch) is introduced, and the general quantitative genetic recursion for the mean value of developmental parameters presented. Evolutionary steps proportional to the difference between current median parameters and parameters currently selected for depend on the fitness, which is assumed to depend on emergence density. Asymptotic states of the joint model are determined, which turn out to be neutrally stable (marginal) fixed points in the developmental model by itself, and an associated stable emergence distribution is also described. An asymptotic convergence analysis is presented for idealized circumstances, indicating basic stability criteria. Numerical studies show that the stability analysis is quite conservative, with basins of attraction to the asymptotic states that are much larger than expected. It is shown that frequency-dependent selection drives oscillatory dynamics and that the asymptotic states balance the asymmetry of the emergence distribution and the fitness function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentz, B. J., Logan, J. A., & Vandygriff, J. C. (2001). Latitudinal variation in dendroctonus ponderosae (coleoptera: Scolytidae) development time and adult size. Can. Entomol., 133(3), 375–387.

    Article  Google Scholar 

  • Calabrese, J. M., & Fagan, W. F. (2004). Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am. Nat., 164(1), 25–37.

    Article  Google Scholar 

  • Chesson, P., & Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat., 150(5), 519–553.

    Article  Google Scholar 

  • Danks, H. V. (1987). Monograph series, No. 1. Insect dormancy: An ecological perspective. Ottawa: Biological Survey of Canada (Terrestrial Arthropods).

    Google Scholar 

  • Gilbert, E., Powell, J. A., Logan, J. A., & Bentz, B. J. (2004). Comparison of three models predicting developmental milestones given environmental and individual variation. Bull. Math. Biol., 66, 1821–1850.

    Article  MathSciNet  Google Scholar 

  • Gomulkiewicz, R., & Holt, R. D. (1995). When does evolution by natural selection prevent extinction. Evolution, 49(1), 201–207.

    Article  Google Scholar 

  • Hendry, A. P., Wenburg, J. K., Bentzen, P., Volk, E. C., & Quinn, T. P. (2000). Rapid evolution of reproductive isolation in the wild: Evidence from introduced salmon. Science, 290(5491), 516–518.

    Article  Google Scholar 

  • Holt, R. D. (1990). The microevolutionary consequences of climate change. Trends Ecol. Evol., 5(9), 311–315.

    Article  Google Scholar 

  • Jenkins, J. L., Powell, J. A., Logan, J. A., & Bentz, B. J. (2001). Low seasonal temperatures promote life cycle synchronization. Bull. Math. Biol., 63, 573–595.

    Article  Google Scholar 

  • Johnson, M. T. J., & Agrawal, A. A. (2003). The ecological play of predator-prey dynamics in an evolutionary theatre. Trends Ecol. Evol., 18(11), 549–551.

    Article  Google Scholar 

  • Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.

    Article  Google Scholar 

  • Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat., 142, 911–927.

    Article  MathSciNet  Google Scholar 

  • Logan, J. A., Regniere, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ., 1(3), 130–137.

    Article  Google Scholar 

  • Logan, J. D. (2008). Phenologically-structured predator-prey dynamics with temperature dependence. Bull. Math. Biol., 70(1), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  • Lynch, M., & Lande, R. (1993). Evolution and extinction in response to environmental change. In P. M. Kareiva, J. G. Kingsolver, & R. B. Huey (Eds.), Biotic interactions and global change (pp. 234–250). Sunderland: Sinauer Associates.

    Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). Island biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Powell, J. A., & Logan, J. A. (2005). Insect seasonality: Circle map analysis of temperature-driven life cycles. Theor. Popul. Biol., 67(3), 161–179.

    Article  MATH  Google Scholar 

  • Powell, J. A., Jenkins, J. L., Logan, J. A., & Bentz, B. J. (2000). Seasonal temperature alone can synchronise life cycles. Bull. Math. Biol., 62, 977–998.

    Article  Google Scholar 

  • Reznick, D. N., & Ghalambor, C. K. (2001). The population ecology of contemporary adaptations: What empirical studies reveal about the conditions that promote adaptive evolution. Genetica, 112, 183–198.

    Article  Google Scholar 

  • Roy, M., Brodeur, J., & Cloutier, C. (2002). Relationship between temperature and developmental rate of stethorus punctillum (coleoptera: Coccinellidae) and its prey tetranychus mcdanieli (acarina: Tetranychidae). Environ. Entomol., 31(1), 177–187.

    Article  Google Scholar 

  • Skelly, D. K., Joseph, L. N., Possingham, H. P., Freidenburg, L. K., Farrugia, T. J., Kinnison, M. T., & Hendry, A. P. (2007). Evolutionary responses to climate change. Conserv. Biol., 21(5), 1353–1355.

    Article  Google Scholar 

  • Slatkin, M. (1980). Ecological character displacement. Ecology, 61(1), 163–177.

    Article  Google Scholar 

  • Taylor, F. (1981). Ecology and evolution of physiological time in insects. Am. Nat., 117(1), 1–23.

    Article  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, F. N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntly, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

    Article  Google Scholar 

  • Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends Ecol. Evol., 13(8), 329–332.

    Article  Google Scholar 

  • Visser, M. E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc., Ser. B, 275, 649–659.

    Article  Google Scholar 

  • Yamanaka, T., Tatsuki, S., & Shimada, M. (2008). Adaptation to the new land or effect of global warming? An age-structured model for rapid voltinism change in an alien lepidopteran pest. J. Anim. Ecol., 77, 585–596.

    Article  Google Scholar 

  • Zaslavski, V. A. (1996). Essentials of the environmental control of insect seasonality as reference points for comparative studies in other invertebrates. Hydrobiologia, 320, 123–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Cobbold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobbold, C.A., Powell, J.A. Evolution Stabilises the Synchronising Dynamics of Poikilotherm Life Cycles. Bull Math Biol 73, 1052–1081 (2011). https://doi.org/10.1007/s11538-010-9552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9552-1

Keywords

Navigation