Skip to main content

Advertisement

Log in

Inclusive Fitness from Multitype Branching Processes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

I use multitype branching processes to study genetic models for the evolution of social behaviour, i.e. behaviours that, when acted out, affect the success of the actor’s neighbours. Here, I suppose an individual bearing a mutant copy of a gene influences the reproductive success of a neighbour by altering its own competitive ability. Approximations based on assumptions about the rareness of the mutant allele and the strength of selection allow me to formulate statements concerning the probability of mutant extinction in terms of inclusive fitness. Inclusive fitness is an idea well known to biologists and can be thought of as a sum of an individual’s fitness and the fitness of each of its relatives, weighted by some measure of genetic relatedness. Previous work has led to some confusion surrounding the definition of the inclusive-fitness effect of a mutant allele when individuals carrying that allele experience demographic conditions that fluctuate randomly. In this paper, I emphasise the link between inclusive fitness and the probability of mutant extinction. I recover standard results for populations of constant size, and I show that inclusive fitness can be used to determine the short-term fate of mutants in the face of stochastic demographic fluctuations. Overall, then, I provide a connection between certain inclusive-fitness-based approaches routinely applied in theoretical studies of social evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., Matsuda, H., & Harada, Y. (1993). Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol., 7, 465–487.

    Article  Google Scholar 

  • Allen, L. J. S. (2003). An introduction to stochastic processes with applications to biology. Upper Saddle River: Pearson.

    MATH  Google Scholar 

  • Christiansen, F. B. (1991). On conditions for evolutionary stability for a continuously varying character. Am. Nat., 128, 37–50.

    Article  Google Scholar 

  • Courteau, J., & Lessard, S. (2000). Optimal sex ratios in structured populations. J. Theor. Biol., 207, 159–175.

    Article  Google Scholar 

  • Day, T. (2001). Population structure inhibits evolutionary diversification under competition for resources. Genetica, 112–113, 71–86.

    Article  Google Scholar 

  • Day, T., & Taylor, P. D. (1997). Hamilton’s rule meets the Hamiltonian: kin selection on dynamic characters. Proc. R. Soc. Lond. B, 264, 639–644.

    Article  Google Scholar 

  • Eshel, I. (1983). Evolutionary and continuous stability. J. Theor. Biol., 103, 99–111.

    Article  MathSciNet  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon.

    MATH  Google Scholar 

  • Frank, S. A. (1986). Dispersal polymorphisms in subdivided populations. J. Theor. Biol., 122, 303–309.

    Article  Google Scholar 

  • Frank, S. A. (1992). A kin selection model for the evolution of virulence. Proc. R. Soc. Lond. B, 250, 195–197.

    Article  Google Scholar 

  • Gandon, S. (1999). Kin competition, the cost of inbreeding and the evolution of dispersal. J. Theor. Biol., 200, 345–364.

    Article  Google Scholar 

  • Gandon, S., & Michalakis, Y. (2000). Evolution of parasite virulence against qualitative or quantitative host resistance. Proc. R. Soc. Lond. B, 267, 985–990.

    Article  Google Scholar 

  • Gardner, A., & West, S. A. (2004). Spite and the scale of local competition. J. Evol. Biol., 17, 1195–1203.

    Article  Google Scholar 

  • Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Grafen, A. (1985). Hamilton’s rule OK. Nature, 318, 310–311.

    Article  Google Scholar 

  • Grafen, A. (1999). Formal Darwinism, the individual-as-a-maximizing-agent analogy and bet-hedging. Proc. R. Soc. Lond. B, 266, 799–803.

    Article  Google Scholar 

  • Grafen, A. (2007). Detecting kin selection at work using inclusive fitness. Proc. R. Soc. Lond. B, 274, 713–719.

    Article  Google Scholar 

  • Grafen, A., & Archetti, M. (2007). Natural selection of altruism in inelastic viscous homogeneous populations. J. Theor. Biol., 252, 694–710.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour, I and II. J. Theor. Biol., 7, 1–52.

    Article  Google Scholar 

  • Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156, 477–488.

    Article  Google Scholar 

  • Hamilton, W. D. (1970). Selfish and spiteful behaviour in an evolutionary model. Nature, 228, 1218–1220.

    Article  Google Scholar 

  • Hamilton, W. D., & May, R. M. (1977). Dispersal in stable habitats. Nature, 269, 578–581.

    Article  Google Scholar 

  • Heffernan, J. M., Smith, R. J., & Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2, 281–293.

    Article  Google Scholar 

  • Irwin, A. J., & Taylor, P. D. (2000). Evolution of dispersal in a stepping-stone population with overlapping generations. Theor. Popul. Biol., 58, 321–328.

    Article  MATH  Google Scholar 

  • Killingback, T., Bieri, J., & Flatt, T. (2006). Evolution in group-structured populations can resolve the tragedy of the commons. Proc. R. Soc. B, 273, 1477–1481.

    Article  Google Scholar 

  • Lessard, S. (2009). Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics. J. Math. Biol., 59, 659–696.

    Article  MATH  MathSciNet  Google Scholar 

  • Leturque, H., & Rousset, F. (2002). Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. Theor. Popul. Biol., 62, 169–180.

    Article  MATH  Google Scholar 

  • Leturque, H., & Rousset, F. (2003). Joint evolution of sex ratio and dispersal: conditions for higher dispersal from good habitats. Evol. Ecol., 17, 67–84.

    Article  Google Scholar 

  • Lion, S., & van Baalen, M. (2007). From infanticide to parental care: why spatial structure can help adults be good parents. Am. Nat., 170, E26–E46.

    Article  Google Scholar 

  • Lion, S., & van Baalen, M. (2008). Self-structuring in spatial evolutionary ecology. Ecol. Lett., 11, 277–295.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define fitness for general ecological scenarios? Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.

    Article  Google Scholar 

  • Mirmirani, M., & Oster, G. F. (1978). Competition, kin selection and evolutionarily stable strategies. Theor. Popul. Biol., 13, 304–339.

    Article  MATH  MathSciNet  Google Scholar 

  • Pen, I. (2006). When boys want to be girls: effects of mating system and dispersal on parent-offspring sex ratio conflict. Evol. Ecol. Res., 8, 103–113.

    Google Scholar 

  • Portmann, W. O. (1959). A derivative for Hausdorff-analytic functions. Proc. Am. Math. Soc., 10, 101–105.

    Article  MATH  MathSciNet  Google Scholar 

  • Price, G. R. (1970). Selection and covariance. Nature, 227, 520–521.

    Article  Google Scholar 

  • Queller, D. C. (1994). Genetic relatedness in viscous populations. Evol. Ecol., 8, 70–73.

    Article  Google Scholar 

  • Rousset, F. (2003). A minimal derivation of convergence stability measures. J. Theor. Biol., 221, 665–668.

    Article  Google Scholar 

  • Rousset, F. (2004). Genetic structure and selection in subdivided populations. Princeton: Princeton University Press.

    Google Scholar 

  • Rousset, F., & Billiard, S. (2000). A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J. Evol. Biol., 13, 814–825.

    Article  Google Scholar 

  • Rousset, F., & Ronce, O. (2004). Inclusive fitness for traits affecting metapopulation demography. Theor. Popul. Biol., 65, 127–141.

    Article  MATH  Google Scholar 

  • Roze, D., & Rousset, F. (2004). The robustness of Hamilton’s rule and fixation probability under partial sib mating. Am. Nat., 164, 214–231.

    Article  Google Scholar 

  • Taylor, P. D. (1988). An inclusive fitness model for dispersal of offspring. J. Theor. Biol., 130, 363–378.

    Article  Google Scholar 

  • Taylor, P. D. (1989). Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol., 36, 125–143.

    Article  MATH  Google Scholar 

  • Taylor, P. D. (1990). Allele-frequency change in a class-structured population. Am. Nat., 135, 95–106.

    Article  Google Scholar 

  • Taylor, P. D. (1992a). Altruism in viscous populations—an inclusive fitness model. Evol. Ecol., 6, 352–356.

    Article  Google Scholar 

  • Taylor, P. D. (1992b). Inclusive fitness in a homogeneous environment. Proc. R. Soc. Lond. B, 249, 299–302.

    Article  Google Scholar 

  • Taylor, P. D. (1994). Sex ratio in a stepping-stone population with sex-specific dispersal. Theor. Popul. Biol., 45, 203–218.

    Article  MATH  Google Scholar 

  • Taylor, P. D. (1996). Inclusive fitness and genetic models of behaviour. J. Math. Biol., 34, 654–674.

    Article  MATH  Google Scholar 

  • Taylor, P. D., & Frank, S. A. (1996). How to make a kin selection model. J. Theor. Biol, 180, 27–37.

    Article  Google Scholar 

  • Taylor, P. D., & Getz, W. M. (1994). An inclusive fitness model for the evolutionary advantage of sibmating. Evol. Ecol., 8, 61–69.

    Article  Google Scholar 

  • Taylor, P. D., & Irwin, A. J. (2000). Overlapping generations can promote altruistic behaviour. Evolution, 54, 1135–1141.

    Google Scholar 

  • Taylor, P. D., Irwin, A. J., & Day, T. (2000). Inclusive fitness in finite deme-structured and stepping-stone populations. Selection, 1, 153–163.

    Article  Google Scholar 

  • Taylor, P. D., Day, T., & Wild, G. (2007a). From inclusive fitness to fixation probability in homogeneous finite structured populations. J. Theor. Biol., 249, 101–110.

    Article  Google Scholar 

  • Taylor, P. D., Day, T., & Wild, G. (2007b). Evolution of cooperation in a finite homogeneous graph. Nature, 447, 469–472.

    Article  Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. Q. Rev. Biol., 46, 35–57.

    Article  Google Scholar 

  • Úbeda, F. (2008). Evolution of genomic imprinting with biparental care: implications for Prader-Willi and Angelman syndromes. PLoS Biol., 6, 1678–1692.

    Article  Google Scholar 

  • Waxman, D., & Gavrilets, S. (2005). 20 questions on adaptive dynamics. J. Evol. Biol., 18, 1139–1154.

    Article  Google Scholar 

  • Wild, G., & Taylor, P. D. (2004). Kin selection models for the co-evolution of the sex ratio and sex-specific dispersal. Evol. Ecol. Res., 6, 481–502.

    Google Scholar 

  • Wild, G., & West, S. A. (2009). Genomic imprinting and sex allocation. Am. Nat., 173, E1–E14.

    Article  Google Scholar 

  • Wild, G., Gardner, A., & West, S. A. (2009). Adaptation and the evolution of parasite virulence in a connected world. Nature, 459, 983–986.

    Article  Google Scholar 

  • Wilson, D. S., Pollock, G. B., & Dugatkin, L. A. (1992). Can altruism evolve in purely viscous populations? Evol. Ecol., 6, 331–341.

    Article  Google Scholar 

  • Wynne-Edwards, V. C. (1963). Intergroup selection in the evolution of social systems. Nature, 200, 623–626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, G. Inclusive Fitness from Multitype Branching Processes. Bull Math Biol 73, 1028–1051 (2011). https://doi.org/10.1007/s11538-010-9551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9551-2

Keywords

Navigation