Skip to main content
Log in

Precision and Reliability in Animal Navigation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Uncertainty plays an important role in several navigational computations. Navigation typically depends on multiple sources of information, and different navigational systems may operate both in parallel and in combination. The optimal combination of information from different sources must take into account the uncertainty of that information. We distinguish between two types of spatial uncertainty, precision, and reliability. Precision is the inverse variance of the probability distribution that describes the information a cue contributes to an organism’s knowledge of its location. Reliability is the probability of the cue being correctly identified, or the probability of a cue being related to a target location. We argue that in most environments, precision and reliability are negatively correlated. In case of cue conflict, precision and reliability must be traded off against each other. We offer a quantitative description of optimal behaviour. Knowledge of uncertainty is also needed to optimally determine the point where a search should start when an organism has more precise spatial information in one of the spatial dimensions. We show that if there is any cost to travel, it is advantageous to head off to one side of the most likely target location and head toward the target. The magnitude of the optimal offset depends on both travel cost and search cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins, J. E., Fiser, J., & Jacobs, R. A. (2001). Experience-dependent visual cue integration based on consistencies between visual and haptic percepts. Vis. Res., 41, 449–461.

    Article  Google Scholar 

  • Biegler, R. (2000). Possible uses of path integration in animal navigation. Anim. Learn. Behav., 28(3), 257–277.

    Article  MathSciNet  Google Scholar 

  • Biegler, R. (2006). Functional considerations in animal navigation: how do you use what you know? In M. F. Brown & R. G. Cook (Eds.), Animal spatial cognition: comparative, neural, and computational approaches. [On-line]. Available: www.pigeon.psy.tufts.edu/asc/biegler/.

  • Biegler, R., & Morris, R. G. M. (1996). Landmark stability: further studies pointing to a role in spatial learning. Q. J. Exp. Psychol., 49B(4), 307–345.

    Google Scholar 

  • Bisetzky, A. R. (1957). Die Tänze der Bienen nach einem Fussweg zum Futterplatz. Z. Vgl. Physiol., 40, 264–288.

    Article  Google Scholar 

  • Chapuis, N., & Varlet, C. (1987). Short cuts by dogs in natural surroundings. Q. J. Exp. Psychol., 35B, 213–219.

    Google Scholar 

  • Chapuis, N., Thinus-Blanc, C., & Poucet, B. (1983). Dissociation of mechanisms involved in dogs’ oriented displacements. Q. J. Exp. Psychol., 35B, 213–219.

    Google Scholar 

  • Cheng, K. (1988). Some psychophysics of the pigeon’s use of landmarks. J. Comp. Physiol. A, 162, 815–826.

    Article  Google Scholar 

  • Cheng, K. (1990). More psychophysics of the pigeon’s use of landmarks. J. Comp. Physiol. A, 166, 857–863.

    Article  Google Scholar 

  • Cheng, K., Collett, T. S., Pickhard, A., & Wehner, R. (1987). The use of visual landmarks by honey bees: Bees weight landmarks according to their distance from the goal. J. Comp. Physiol. A, 161, 469–475.

    Article  Google Scholar 

  • Cheng, K., Shettleworth, S. J., et al. (2007). Bayesian integration of spatial information. Psychol. Bull., 133(4), 625–637.

    Article  Google Scholar 

  • Chittka, L., & Geiger, K. (1995a). The influences of landmarks on distance estimation of honey bees. Anum. Behav., 50, 23–31.

    Article  Google Scholar 

  • Chittka, L., & Geiger, K. (1995b). Honeybee long-distance orientation in a controlled environment. Ethology, 99, 117–126.

    Article  Google Scholar 

  • Dayan, P., & Yu, A. (2003). Uncertainty and learning. IETE J. Res., 49(2–3), 171–181.

    Google Scholar 

  • Dall, S. R. X., Giraldeau, L. A., Olsson, O., McNamara, J. M., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends Ecol. Evol., 20(4), 187–193.

    Article  Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Q. J. Econ., 75, 643–669.

    Article  Google Scholar 

  • Ernst, M. O. (2006). A Bayesian view on multimodal cue integration. In G. Knoblich, I. M. Thornton, M. Grosjean & M. Shiffrar (Eds.), Human body perception from the inside out (pp. 105–131). Oxford: Oxford University Press.

    Google Scholar 

  • Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch. J. Vis., 7(5), 1–14.

    Article  Google Scholar 

  • Ernst, M. O., & Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

    Article  Google Scholar 

  • Etienne, A. S., Teroni, E., Hurni, C., & Portennier, V. (1990). The effect of a single light cue on homing behaviour of the golden hamster. Anim. Behav., 39, 17–41.

    Article  Google Scholar 

  • Gatty, H. (1999). Finding your way without map or compass. Mineola: Dover.

    Google Scholar 

  • Gothard, K. M., Skaggs, W. E., & McNaughton, B. L. (1996). The dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci., 16(24), 8027–8040.

    Google Scholar 

  • Hampton, R. R. (2003). Metacognition as evidence for explicit representation in nonhumans. Behav. Brain Sci., 26, 346–347.

    Article  Google Scholar 

  • Hartmann, G., & Wehner, R. (1995). The ant’s path integration system: a neural architecture. Biol. Cybern., 73, 483–497.

    MATH  Google Scholar 

  • Healy, S. D., Hurly, T. A. (1998). Rufous hummingbirds’ (Selasphorus rufus) memory for flowers: patterns or actual spatial locations? J. Exp. Psychol., Anim. Behav. Process., 24(4), 396–404.

    Article  Google Scholar 

  • Huettel, S. A., Stowe, C. J., Gordon, E. A., Warner, B. T., & Platt, M. L., (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49, 765–775.

    Article  Google Scholar 

  • Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310, 1680–1683.

    Article  Google Scholar 

  • Inglis, I. R. (2000). The central role of uncertainty reduction in determining behaviour. Behaviour, 137, 1567–1599.

    Article  Google Scholar 

  • Jacobs, R. A. (2002). What determines visual cue reliability? Trends Cogn. Sci., 6(8), 345–350.

    Article  MathSciNet  Google Scholar 

  • Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nat. Neurosci., 9(5), 690–696.

    Article  Google Scholar 

  • Jeffery, K. J. (1998). Learning of landmark stability and instability by hippocampal place cells. Neuropharmacology, 37(4–5), 677–687.

    Article  Google Scholar 

  • Kamil, A. C., & Jones, J. E. (1997). The seed-storing corvid Clark’s nutcracker learns geometric relationships among landmarks. Nature, 390, 276–279.

    Article  Google Scholar 

  • Knierim, J. J., Kudrimoti, H. S., & McNaughton, B. L. (1995). Place cells, head direction cells, and the learning of landmark stability. J. Neurosci., 15(3), 1648–1659.

    Google Scholar 

  • Knill, D. C. (2007). Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. J. Vis., 7(7).

  • Koerding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244–247.

    Article  Google Scholar 

  • Koops, M. A. (2004). Reliability and the value of information. Anim. Behaviour, 67, 103–111.

    Article  Google Scholar 

  • Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nat. Neurosci., 9(11), 1432–1438.

    Article  Google Scholar 

  • Mackintosh, J. H. (1973). Factors affecting the recognition of territory boundaries by mice (Mus musculus). Anim. Behav., 21, 464–470.

    Article  Google Scholar 

  • Maybeck, P. S. (1979). Stochastic models, estimation and control. New York: Academic Press.

    MATH  Google Scholar 

  • Moser, E., & Moser, M. B. (2008). A metric for space. Hippocampus, 18(12), 1142–1156.

    Article  Google Scholar 

  • Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. USA, 85, 5287–5290.

    Article  Google Scholar 

  • Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Curr. Biol., 18, 689–693.

    Article  Google Scholar 

  • O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381, 425–428.

    Article  Google Scholar 

  • Pfuhl, G., Tjelmeland, H., & Biegler, R. (2009). Optimal cache search depends on precision of spatial memory and pilfering, but what if that knowledge is not perfect? Anim. Behav., 78, 819–828.

    Article  Google Scholar 

  • Roach, N. W., Heron, J., & et al. (2006). Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration. Proc. R. Soc. B, Biol. Sci., 273(1598), 2159–2168.

    Article  Google Scholar 

  • Roberts, A. D. L., & Pearce, J. M. (1998). Control of spatial behavior by an unstable landmark. J. Exp. Psychol. Anim. Behav. Process., 24(2), 172–184.

    Article  Google Scholar 

  • Rotenberg, A., & Muller, R. U. (1997). Variable place-cell coupling to a continuously viewed stimulus: evidence that the hippocampus acts as a perceptual system. Philos. Trans. R. Soc. Lond. B, 352, 1505–1513.

    Article  Google Scholar 

  • Sato, Y., Toyoizumi, T., & Aihara, K. (2007). Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neur. Comput., 19, 3335–3355.

    Article  MATH  Google Scholar 

  • Séguinot, V., Maurer, R., & Etienne, A. S. (1993). Dead reckoning in a small mammal: the evaluation of distance. J. Comp. Physiol. A, 173, 103–113.

    Article  Google Scholar 

  • Seyfarth, E. A., Hergenröder, R., Ebbes, H., & Barth, F. G. (1982). Idiothetic orientation of a wandering spider: compensation of detours and estimates of global distance. Behav. Ecol. Sociobiol., 11, 139–148.

    Article  Google Scholar 

  • Shettleworth, S. J., & Sutton, J. E. (2003). Animal metacognition? It’s all in the menthods. Behav. Brain Sci., 26, 353–354.

    Article  Google Scholar 

  • Smith, J. D., Shields, W. E., & Washburn, D. A. (2003). The comparative psychology of uncertainty monitoring and metacognition. Behav. Brain Sci., 26, 317–373.

    Google Scholar 

  • Stephens, D. W. (1989). Variance and the value of information. Am. Nat., 134(1), 128–140.

    Article  Google Scholar 

  • Wehner, R., & Srinivasan, M. V. (1981). Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. Comp. Physiol., 142, 315–338.

    Article  Google Scholar 

  • Wolf, H., & Wehner, R. (2000). Pinpointing food sources: olfactory and anemotactic orientation in desert ants, cataglyphis bicolour. J. Exp. Biol., 203, 857–868.

    Google Scholar 

  • Wolf, H., & Wehner, R. (2005). Desert ants compensate for navigation uncertainty. J. Exp. Biol., 208, 4223–4230.

    Article  Google Scholar 

  • Yu, A. J., & Dayan, P. (2003). Expected and unexpected uncertainty. Ach and NE in the neocortex. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp. 1577–1584). Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Biegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfuhl, G., Tjelmeland, H. & Biegler, R. Precision and Reliability in Animal Navigation. Bull Math Biol 73, 951–977 (2011). https://doi.org/10.1007/s11538-010-9547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9547-y

Keywords

Navigation