Skip to main content
Log in

A Game Theoretical Analysis of the Mating Sign Behavior in the Honey Bee

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry, mating with up to 45 different males (drones). This increases the genetic diversity of their colonies, and consequently their fitness. After copulation, drones leave a mating sign in the genital opening of the queen which has been shown to promote additional mating of the queen. On one hand, this signing behavior is beneficial for the drone because it increases the genetic diversity of the resulting colony that is to perpetuate his genes. On the other hand, it decreases the proportion of the drone’s personal offspring among colony members which is reducing drone fitness. We analyze the adaptiveness and evolutionary stability of this drone’s behavior with a game-theoretical model. We find that theoretically both the strategy of leaving a mating sign and the strategy of not leaving a mating sign can be evolutionary stable, depending on natural parameters. However, the signing strategy is not favored for most scenarios, including the cases that are biologically plausible in reference to empirical data. We conclude that leaving a sign is not in the interest of the drone unless it serves biological functions other than increasing subsequent queen mating chances. Nevertheless, our analysis can also explain the prevalence of such a behavior of honey bee drones by a very low evolutionary pressure for an invasion of the nonsigning strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, B., & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature, 397, 151–154.

    Article  Google Scholar 

  • Baudry, E., Solignac, M., Garnery, L., Gries, M., Cornuet, J. M., & Koeniger, N. (1998). Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. R. Soc. Lond. B, 265, 2009–2014.

    Google Scholar 

  • Boomsma, J. J., Fjerdingstad, E. J., & Frydenberg, J. (1999). Multiple paternity, relatedness and genetic diversity in Acromyrmex leaf-cutter ants. Proc. R. Soc. Lond. B: Biol. Sci., 266, 249–254.

    Article  Google Scholar 

  • Boomsma, J. J., Baer, B., & Heinze, J. (2005). The evolution of male traits in social insects. Ann. Rev. Entomol., 50, 395–420.

    Article  Google Scholar 

  • Estoup, A., Solignac, M., & Cornuet, J. M. (1994). Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B: Biol. Sci., 258, 1–7.

    Article  Google Scholar 

  • Fuchs, S., & Moritz, R. F. A. (1999). Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav. Ecol. Sociobiol., 45, 269–275.

    Article  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), 2340–2360.

    Article  Google Scholar 

  • Gillott, C. (2003). Male accessory gland secretions: modulators of female reproductive physiology and behavior. Ann. Rev. Entomol., 48, 163–184.

    Article  Google Scholar 

  • Gove, R., Hayworth, M., Chhetri, M., & Rueppell, O. (2009). Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insectes Sociaux, 56, 319–331. DOI:10.1007/s00040-009-0028-y.

    Article  Google Scholar 

  • Hayworth, M. K., Johnson, N. G., Wilhelm, M. E., Gove, R. P., Metheny, J. M., & Rueppell, O. (2009). Added weights lead to reduced flight behavior and mating success in polyandrous honey bee queens (Apis mellifera). Ethology, 115, 698–706. DOI: 10.1111/j.1439-0310.2009.01655.x.

    Article  Google Scholar 

  • Koeniger, G. (1990). The role of the mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Animal Behav., 39, 444–449.

    Article  Google Scholar 

  • Koeniger, N., & Koeniger, G. (1991). An evolutionary approach to mating behavior and drone copulatory organs in Apis. Apidologie, 22, 581–590.

    Article  Google Scholar 

  • Koeniger, N., & Koeniger, G. (2007). Mating flight duration of Apis mellifera queens: as short as possible, as long as necessary. Apidologie, 38, 606–611.

    Article  Google Scholar 

  • Koeniger, G., Koeniger, N., & Fabritius, M. (1979). Some detailed observations of mating in the honeybee. Bee World, 60, 53–57.

    Google Scholar 

  • Kronauer, D. J. C., Johnson, R. A., & Boomsma, J. J. (2007). The evolution of multiple mating in army ants. Evolution, 61, 413–422.

    Article  Google Scholar 

  • Loper, G. M., Wolf, W. W., & Taylor, O. R. (1992). Honey-Bee drone flyways and congregation areas—radar observations. J. Kans. Entomol. Soc., 65, 223–230.

    Google Scholar 

  • Mattila, H. R., & Seeley, T. D. (2007). Genetic diversity in honey bee colonies enhances productivity and fitness. Science, 317, 362–364.

    Article  Google Scholar 

  • Maynard Smith, J. (1982). In Evolution and the theory of games (p.  204). Cambridge: Cambridge University Press.

    Google Scholar 

  • Oldroyd, B. P., & Wongsiri, S. (2006). Asian honey bees: biology, conservation and human interactions. Cambridge: Harvard University Press.

    Google Scholar 

  • Rueppell, O., Fondrk, M. K., & Page, R. E. (2006). Male maturation response to selection of the pollen-hoarding syndrome in honey bees (Apis mellifera L). Animal Behav., 71, 227–234.

    Article  Google Scholar 

  • Rueppell, O., Johnson, N. G., & Rychtář, J. (2008). Variance-based selection may explain general mating patterns in social insects. Biol. Lett., 4, 270–273.

    Article  Google Scholar 

  • Ruttner, F. (1954). Mehrfache Begattung der Bienenkönigin. Zool. Anz., 153, 99–105.

    Google Scholar 

  • Tarpy, D. R., & Nielsen, D. I. (2002). Sampling error, effective paternity and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae). Ann. Entomol. Soc. Am., 95, 513–528.

    Article  Google Scholar 

  • Wattanachaiyingcharoen, W., Oldroyd, B. P., Wongsiri, S., Palmer, K., & Paar, R. (2003). A scientific note on the mating frequency of Apis dorsata. Apidologie, 34, 85–86.

    Article  Google Scholar 

  • Wiernasz, D. C., Perroni, C. L., & Cole, B. J. (2004). Polyandry and fitness in the western harvester ant Pogonomyrmex occidentalis. Mol. Ecol., 13, 1601–1606.

    Article  Google Scholar 

  • Winston, M. L. (1987). The biology of honey bees (pp. 202, 209–210). First Harvard University Press Paperback edition (1991).

  • Woyciechowski, M., Kabat, L., & Krol, E. (1994). The function of the mating sign in honey bees Apis mellifera L—new evidence. Animal Behav., 47, 733–735.

    Article  Google Scholar 

  • Woyke, J. (1964). Causes of repeated mating flights by queen honeybees. J. Apic. Res., 3, 17–23.

    Google Scholar 

  • Woyke, J., & Ruttner, F. (1958). An anatomical study of the mating process in the honeybee. Bee World, 39, 3–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rychtář.

Additional information

The research was supported by the NSF grant #0634182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, M., Chhetri, M., Rychtář, J. et al. A Game Theoretical Analysis of the Mating Sign Behavior in the Honey Bee. Bull Math Biol 73, 626–638 (2011). https://doi.org/10.1007/s11538-010-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9544-1

Keywords

Navigation