Skip to main content

Advertisement

Log in

Global Stability for a Class of Virus Models with Cytotoxic T Lymphocyte Immune Response and Antigenic Variation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the global stability of a class of models for in-vivo virus dynamics that take into account the Cytotoxic T Lymphocyte immune response and display antigenic variation. This class includes a number of models that have been extensively used to model HIV dynamics. We show that models in this class are globally asymptotically stable, under mild hypothesis, by using appropriate Lyapunov functions. We also characterise the stable equilibrium points for the entire biologically relevant parameter range. As a by-product, we are able to determine what is the diversity of the persistent strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asquith, B., Bangham, C.R.M. (2003). An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis. Proc. R. Soc. Lond. Ser. B: Biol. Sci., 270(1525), 1651–1657.

    Article  Google Scholar 

  • Bocharov, G.A., Romanyukha, A.A. (1994). Mathematical-model of antiviral immune-response-iii–influenza-A Virus-infection. J. Theor. Biol., 167(4), 323–360.

    Article  Google Scholar 

  • Bonhoeffer, S., et al. (1997). Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA, 94, 6971–6974.

    Article  Google Scholar 

  • de Leenheer, P., Smith, H.L. (2003). Virus dynamics: a global analysis. SIAM J. Appl. Math., 63, 1313–1327.

    Article  MathSciNet  MATH  Google Scholar 

  • Janeway, C., et al. (2004). Immunobiology (6th ed.). New York: Garland Science.

    Google Scholar 

  • Kooi, B., Hanegraaf, P. (2001). Bi-trophic food chain dynamics with multiple component populations. Bull. Math. Biol., 63(2), 271–299.

    Article  Google Scholar 

  • Kooi, B., et al. (1998). On the use of the logistic equation in models of food chains. Bull. Math. Biol., 60, 231–246.

    Article  MATH  Google Scholar 

  • Korobeinikov, A. (2004a). Global properties of basic virus dynamics models. Bull. Math. Biol., 66, 879–883.

    Article  MathSciNet  Google Scholar 

  • Korobeinikov, A. (2004b). Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol., 21(2), 75–83.

    Article  MATH  Google Scholar 

  • Korobeinikov, A. (2009). Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate. Math. Med. Biol., 26, 225–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Korebeinikov, A., Wake, G.C. (1999). Global properties of three-dimensional predator-prey models. J. Appl. Math. Decis. Sci., 3(2), 155–162.

    Article  MathSciNet  Google Scholar 

  • LaSalle, J.P. (1964). Recent advances in Liapunov stability theory. SIAM Rev., 6, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, M.Y., Muldowney, J.S. (1995). Global stability for the seir model in epidemiology. Math. Biosci., 125(2), 155–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchuk, G.I., et al. (1991). Mathematical-model of antiviral immune-response. 2. Parameters identification for acute viral Hepatitis-B. J. Theor. Biol., 151(1), 41–70.

    Article  MathSciNet  Google Scholar 

  • Neumann, A.U., et al. (1998). Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science, 282(5386), 103–107.

    Article  Google Scholar 

  • Nowak, M.A., Bangham, C.R.M. (1996). Population dynamics of immune responses to persitent viruses. Science, 272, 74–79.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M. (2000). Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Pastore, D.H. (2005). A Dinâmica no sistema imunológico na presença de mutação. Ph.D. thesis, IMPA.

  • Perelson, A.S., Nelson, P.W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41, 3–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson, A.S., et al. (1993). Dynamics of HIV-infection of Cd4+ T-cells. Math. Biosci., 114(1), 81–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson, A.S., et al. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271(5255), 1582–1586.

    Article  Google Scholar 

  • Roy, A.B., Solimano, F. (1986). Global stability of partially closed food-chains with resources. Bull. Math. Biol., 48(5–6), 455–468.

    MathSciNet  MATH  Google Scholar 

  • Smith, H.L. (1995). Monotone dynamical systems. Providence: AMS.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max O. Souza.

Additional information

The authors thank an anonymous referee for suggesting that an early version of Theorem 1 could be extended as presented here. MOS is partially supported by FAPERJ grants 170.382/2006 and 110.174/2009, and by CNPq grant 309616/2009-3. JPZ was supported by CNPq under grants 302161/2003-1 and 474085/2003-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, M.O., Zubelli, J.P. Global Stability for a Class of Virus Models with Cytotoxic T Lymphocyte Immune Response and Antigenic Variation. Bull Math Biol 73, 609–625 (2011). https://doi.org/10.1007/s11538-010-9543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9543-2

Keywords

Navigation