Skip to main content
Log in

Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Extinction of an epidemic or a species is a rare event that occurs due to a large, rare stochastic fluctuation. Although the extinction process is dynamically unstable, it follows an optimal path that maximizes the probability of extinction. We show that the optimal path is also directly related to the finite-time Lyapunov exponents of the underlying dynamical system in that the optimal path displays maximum sensitivity to initial conditions. We consider several stochastic epidemic models, and examine the extinction process in a dynamical systems framework. Using the dynamics of the finite-time Lyapunov exponents as a constructive tool, we demonstrate that the dynamical systems viewpoint of extinction evolves naturally toward the optimal path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. J. S. & Burgin, A. M. (2000). Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci., 163, 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso, D., McKane, A. J., & Pascual, M. (2006). Stochastic amplification in epidemics. J. R. Soc. Interface, 4, 575–582.

    Article  Google Scholar 

  • Andersson, H. & Britton, T. (2000). Stochastic epidemic models and their statistical analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Anderson, R. M. & May, R. M. (1991). Infectious diseases of humans. Oxford: Oxford University Press.

    Google Scholar 

  • Assaf, M., Kamenev, A., & Meerson, B. (2008). Population extinction in a time-modulated environment. Phys. Rev. E, 78, 041123.

    Article  MathSciNet  Google Scholar 

  • Aylward, B., Hennessey, K. A., Zagaria, N., Olivé, J.-M., & Cochi, S. (2000). When is a disease eradicable? 100 years of lessons learned. Am. J. Public Heal., 90, 1515–1520.

    Article  Google Scholar 

  • Azaele, S., Pigolotti, S., Banavar, J. R., & Maritan, A. (2006). Dynamical evolution of ecosystems. Nature, 444, 926–928.

    Article  Google Scholar 

  • Banavar, J. R. & Maritan, A. (2009). Ecology: towards a theory of biodiversity. Nature, 460, 334–335.

    Article  Google Scholar 

  • Bartlett, M. S. (1949). Some evolutionary stochastic processes. J. R. Stat. Soc. B Met., 11, 211–229.

    MathSciNet  Google Scholar 

  • Bartlett, M. S. (1957). Measles periodicity and community size. J. R. Stat. Soc. Ser. A–G, 120, 48–70.

    Article  Google Scholar 

  • Bartlett, M. S. (1960). The critical community size for measles in the United States. J. R. Stat. Soc. Ser. A–G, 123, 37–44.

    Article  Google Scholar 

  • Bartlett, M. S. (1961). Stochastic population models in ecology and epidemiology. New York: Wiley.

    Google Scholar 

  • Branicki, M. & Wiggins, S. (2010). Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents. Nonlinear Process. Geophys., 17(1), 1–36.

    Article  Google Scholar 

  • Breman, J. G. & Arita, I. (1980). The confirmation and maintenance of smallpox eradication. New Engl. J. Med., 303, 1263–1273.

    Article  Google Scholar 

  • Choisy, M., Guégan, J.-F., & Rohani, P. (2007). Mathematical modeling of infectious disease dynamics. In M. Tibayrenc (Ed.), Encyclopedia of infectious diseases: modern methodologies (pp. 379–404). New York: Wiley.

    Chapter  Google Scholar 

  • Conlan, A. J. K. & Grenfell, B. T. (2007). Seasonality and the persistence and invasion of measles. Proc. R. Soc. B—Biol. Sci., 274, 1133–1141.

    Article  Google Scholar 

  • de Castro, F. & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecol. Lett., 8, 117–126.

    Article  Google Scholar 

  • Doering, C. R., Sargsyan, K. V., & Sander, L. M. (2005). Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker–Planck approximation. Multiscale Model. Simul., 3(2), 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Doering, C. R., Sargsyan, K. V., Sander, L. M., & Vanden-Eijnden, E. (2007). Asymptotics of rare events in birth-death processes bypassing the exact solutions. J. Phys.: Condens. Matter, 19, 065145.

    Article  Google Scholar 

  • Dykman, M. I. (1990). Large fluctuations and fluctuational transitions in systems driven by coloured Gaussian noise: a high-frequency noise. Phys. Rev. A, 42, 2020–2029.

    Article  MathSciNet  Google Scholar 

  • Dykman, M. I., Mori, E., Ross, J., & Hunt, P. M. (1994). Large fluctuations and optimal paths in chemical-kinetics. J. Chem. Phys., 100(8), 5735–5750.

    Article  Google Scholar 

  • Dykman, M. I., Schwartz, I. B., & Landsman, A. S. (2008). Disease extinction in the presence of random vaccination. Phys. Rev. Lett., 101, 078101.

    Article  Google Scholar 

  • Elgart, V. & Kamenev, A. (2004). Rare event statistics in reaction-diffusion systems. Phys. Rev. E, 70, 041106.

    Article  MathSciNet  Google Scholar 

  • Gang, H. (1987). Stationary solution of master equations in the large-system-size limit. Phys. Rev. A, 36(12), 5782–5790.

    Article  Google Scholar 

  • Gardiner, C. W. (2004). Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin: Springer.

    MATH  Google Scholar 

  • Gaveau, B., Moreau, M., & Toth, J. (1996). Decay of the metastable state in a chemical system: different predictions between discrete and continuous models. Lett. Math. Phys., 37, 285–292.

    MathSciNet  MATH  Google Scholar 

  • Grassly, N. C., Fraser, C., & Garnett, G. P. (2005). Host immunity and synchronized epidemics of syphilis across the United States. Nature, 433, 417–421.

    Article  Google Scholar 

  • Guckenheimer, J. & Holmes, P. (1986). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin: Springer.

    Google Scholar 

  • Haller, G. (2000). Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10(1), 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Haller, G. (2001). Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149, 248–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Haller, G. (2002). Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14(6), 1851–1861.

    Article  MathSciNet  Google Scholar 

  • Kamenev, A. & Meerson, B. (2008). Extinction of an infectious disease: a large fluctuation in a nonequilibrium system. Phys. Rev. E, 77, 061107.

    Article  MathSciNet  Google Scholar 

  • Kamenev, A., Meerson, B., & Shklovskii, B. (2008). How colored environmental noise affects population extinction. Phys. Rev. Lett., 101(26), 268103.

    Article  Google Scholar 

  • Keeling, M. J. & Grenfell, B. T. (1997). Disease extinction and community size: modeling the persistence of measles. Science, 275, 65–67.

    Article  Google Scholar 

  • Kubo, R. (1963). Stochastic Liouville equations. J. Math. Phys., 4, 174–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Kubo, R., Matsuo, K., & Kitahara, K. (1973). Fluctuation and relaxation of macrovariables. J. Stat. Phys., 9(1), 51–96.

    Article  Google Scholar 

  • Lekien, F., Shadden, S. C., & Marsden, J. E. (2007). Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48, 065404.

    Article  MathSciNet  Google Scholar 

  • Lloyd, A. L., Zhang, J., & Root, A. M. (2007). Stochasticity and heterogeneity in host-vector models. J. R. Soc. Interface, 4, 851–863.

    Article  Google Scholar 

  • Melbourne, B. A. & Hastings, A. (2008). Extinction risk depends strongly on factors contributing to stochasticity. Nature, 454, 100–103.

    Article  Google Scholar 

  • Minayev, P. & Ferguson, N. (2009). Incorporating demographic stochasticity into multi-strain epidemic models: application to influenza A. J. R. Soc. Interface, 6, 989–996.

    Article  Google Scholar 

  • Nåsell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol., 211, 11–27.

    Article  Google Scholar 

  • Pierrehumbert, R. T. (1991). Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids A, 3, 1250–1260.

    Article  Google Scholar 

  • Pierrehumbert, R. T. & Yang, H. (1993). Global chaotic mixing on isentropic surfaces. J. Atmos. Sci., 50, 2462–2480.

    Article  Google Scholar 

  • Schwartz, I. B., Billings, L., Dykman, M., & Landsman, A. (2009). Predicting extinction rates in stochastic epidemic models. J. Stat. Mech.—Theory E, P01005.

  • Schwartz, I. B., Forgoston, E., Bianco, S., & Shaw, L. B. (2010). Converging towards the optimal path to extinction. Submitted.

  • Shadden, S. C., Lekien, F., & Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw, L. B. & Schwartz, I. B. (2008). Fluctuating epidemics on adaptive networks. Phys. Rev. E, 77, 066101.

    Article  MathSciNet  Google Scholar 

  • Shaw, L. B. & Schwartz, I. B. (2010). Enhanced vaccine control of epidemics in adaptive networks. Phys. Rev. E. In press.

  • Shaw, L. B., Billings, L., & Schwartz, I. B. (2007). Using dimension reduction to improve outbreak predictability of multistrain diseases. J. Math. Biol., 55, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Stone, L., Olinky, R., & Huppert, A. (2007). Seasonal dynamics of recurrent epidemics. Nature, 446, 533–536.

    Article  Google Scholar 

  • Tretiakov, O. A., Gramespacher, T., & Matveev, K. A. (2003). Lifetime of metastable states in resonant tunneling structures. Phys. Rev. B, 67(7), 073303.

    Article  Google Scholar 

  • van Kampen, N. G. (2007). Stochastic processes in physics and chemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Wentzell, A. (1976). Rough limit theorems on large deviations for Markov stochastic processes, I. Theor. Probab. Appl., 21, 227–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Forgoston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgoston, E., Bianco, S., Shaw, L.B. et al. Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction. Bull Math Biol 73, 495–514 (2011). https://doi.org/10.1007/s11538-010-9537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9537-0

Keywords

Navigation