Skip to main content
Log in

Influence of Intrapredatory Interferences on Impulsive Biological Control Efficiency

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a model is proposed for the biological control of a pest by its natural predator. The model incorporates a qualitative description of intrapredatory interference whereby predator density decreases the per capita predation efficiency and generalises the classical Beddington–DeAngelis formulation. A pair of coupled ordinary differential equations are used, augmented by a discrete component to depict the periodic release of a fixed number of predators into the system. This number is defined in terms of the rate of predator release and the frequency at which the releases are to be carried out. This formulation allows us to compare different biological control strategies in terms of release size and frequency that involve the same overall number of predators. The stability properties of the zero-pest solution are analysed. We obtain an upper bound on the interference strength (the biological condition) and a minimal bound on the predator release rate (the managerial condition) required to eradicate a pest population. We demonstrate that increasing the frequency of releases reduces this minimal rate and also increases the rate of convergence of the system to the zero-pest solution for a given release rate. Additionally, we show that other conclusions are to be expected if the interferences between predators have weaker or stronger effects than the generalised Beddington–DeAngelis formulation proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arditi, R., Ginzburg, L.R., 1989. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326.

    Article  Google Scholar 

  • Beddington, J.R., 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340.

    Article  Google Scholar 

  • Buffoni, G., Gilioli, G., 2003. A lumped parameter model for acarine predator-prey population interactions. Ecol. Model. 170(2–3), 155–171.

    Article  Google Scholar 

  • Buffoni, G., Cassinari, M.P., Groppi, M., Serluca, M., 2005. Modelling of predator-prey trophic interactions. Part I: two trophic levels. J. Math. Biol. 50, 713–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Byers, A., Giovannucci, D., Liu, P., 2008. Value adding standards in the North American food market. trade opportunities in certified products for developing countries. Commodities and Trade Technical paper 11, FAO Trade and Markets Division, Rome.

  • Damon, A., 2000. Evaluation of current techniques and new approaches in the use of Cephalonomia stephanoderis (Hymenoptera: Bethylidae) as a biological control agent of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae), in Chiapas, Mexico. Ph.D. Thesis, University of London.

  • Damon, A., Valle, J., 2002. Comparison of two release techniques for the use of Cephalonomia stephanoderis (Hymenoptera: Bethylidae), to control the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae) in Soconusco, southeastern Mexico. Biol. Control 24, 117–127.

    Article  Google Scholar 

  • DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V., 1975. A model for trophic interaction. Ecology 56, 881–892.

    Article  Google Scholar 

  • Duan, Z.S., Wang, J.Z., Chen, G.R., Huang, L., 2008. Stability analysis and decentralized control of a class of complex dynamical networks. Automatica 44(4), 1028–1035.

    MathSciNet  Google Scholar 

  • Eskola, H.T.M., Geritz, S.A.H., 2007. On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol. 69(1), 329–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Everleigh, E.S., Chant, D.A., 1982. Experimental studies: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae). Can. J. Zool. 60, 611–629.

    Article  Google Scholar 

  • Flowers, R.W., Salom, S.M., Kok, L.T., 2006. Competitive interactions among two specialist predators and a generalist predator of hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgida) in south-western Virginia. Agric. For. Entomol. 8, 253–262.

    Article  Google Scholar 

  • Gerson, U., 2007. Intraguild predation and other interactions among acarine biocontrol agents. In: Gerson, U., Smiley, R.L., Ochoa, R. (Eds.), Mites (Acari) for Pest Control, pp. 360–366. Blackwell, Oxford.

    Google Scholar 

  • Hassell, M.P., Varley, G.C., 1969. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137.

    Article  Google Scholar 

  • Holling, C.S., 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398.

    Article  Google Scholar 

  • Hu, T.S., Huang, B., Lin, Z.L., 2004. Absolute stability with a generalized sector condition. IEEE Trans. Automat. Contr. 50(11), 1872–1877.

    MathSciNet  Google Scholar 

  • Janssen, A., Bruin, J., Jacobs, G., Schraag, R., Sabelis, M.W., 1997. Predators use volatiles to avoid prey patches with conspecifis. J. Anim. Ecol. 66, 223–232.

    Article  Google Scholar 

  • Khalil, H., 2002. Nonlinear Systems, 3rd edn. Prentice-Hall, New York.

    MATH  Google Scholar 

  • Koen-Alonso, M., 2007. A process-oriented approach to the multispecies functional response. In: Rooney, N., McCann, K.S., Noakes, D.L.G. (Eds.), From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems, pp. 1–36. Springer, Berlin.

    Google Scholar 

  • Kuang, Y., Beretta, E., 1998. Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36(4), 389–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Lakmeche, A., Arino, O., 2000. Bifurcation of non-trivial periodic solutions of impulsive differential equations arising in chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst. 7(2), 265–287.

    MathSciNet  MATH  Google Scholar 

  • Liberzon, M.R., 2006. Essays on the absolute stability theory. Autom. Remote Control 67(10), 1610–1644.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, B., Zhang, Y.J., Chen, L.S., 2005. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management. Nonlinear Anal. Real World Appl. 6(2), 227–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Lur’e, A.I., Postnikov, V.N., 1944. On the theory of stability of the controlled systems. Prikl. Mat. Meh. 8(3), 246–248.

    Google Scholar 

  • Mailleret, L., Grognard, F., 2006. Optimal release policy for prophylactic biological control. In: Positive Systems: Theory and Applications, Lecture Notes in Control and Information Sciences, vol. 341, pp. 89–96. Springer, Berlin.

    Google Scholar 

  • Mailleret, L., Grognard, F., 2009. Global stability and optimisation of a general impulsive biological control model. Math. Biosci. 221(2), 91–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Mailleret, L., Lemesle, V., 2009. A note on semi-discrete modelling in life sciences. Philos. Trans. R. Soc. A 367, 4779–4799.

    Article  MathSciNet  MATH  Google Scholar 

  • Nachman, G., 2006. The effects of prey patchiness, predator aggregation and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Exp. App. Acarol. 38, 87–111.

    Article  Google Scholar 

  • Negi, K., Gakkhar, S., 2007. Dynamics in a Beddington-DeAngelis prey-predator system with impulsive harvesting. Ecol. Model. 206, 421–430.

    Article  Google Scholar 

  • Nundloll, S., Mailleret, L., Grognard, F., 2008. The effect of partial crop harvest on biological pest control. Rocky Mt. J. Math. 38(5), 1633–1662.

    Article  MathSciNet  MATH  Google Scholar 

  • Nundloll, S., Mailleret, L., Grognard, F., 2010. Two models of interfering predators in impulsive biological control. J. Biol. Dyn. 4, 102–114.

    Article  MathSciNet  Google Scholar 

  • Reganold, J.P., Glover, J.D., Andrews, P.K., Hinman, H.R., 2001. Sustainability of three apple production systems. Nature 410, 926–930.

    Article  Google Scholar 

  • Royama, T., 1992. Analytical Population Dynamics. Chapman and Hall, London.

    Google Scholar 

  • Ruxton, G.D., Gurney, W.S.C., 1992. Interference and generation cycles. Theor. Popul. Biol. 42, 235–253.

    Article  MATH  Google Scholar 

  • Shulgin, B., Stone, L., Agur, Z., 1998. Pulse vaccination strategy in the sir epidemic model. Bull. Math. Biol. 60, 1123–1148.

    Article  MATH  Google Scholar 

  • Tang, S., Xiao, Y., Chen, R.A., Cheke, L., 2005. Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67, 115–135.

    Article  MathSciNet  Google Scholar 

  • Umbanhowar, J., Maron, S., Harrison, J., 2003. Density-dependent foraging behaviours in a parasitoid lead to density-dependent parasitism of its host. Oecologia 137, 123–130.

    Article  Google Scholar 

  • Vidyasagar, M.M., 1993. Nonlinear Systems Analysis. Prentice-Hall, New York.

    MATH  Google Scholar 

  • Visser, M.E., Jones, T.H., Driessen, G., 1999. Interference among insect parasitoids: multi-patch experiment. J. Anim. Ecol. 68, 108–120.

    Article  Google Scholar 

  • Yasuda, H., Takagi, T., Kogi, K., 2000. Effects of conspecific and heterospecific larval tracks on the oviposition behaviour of the predatory ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol. 97, 551–553.

    Google Scholar 

  • Zhang, S., Chen, L.S., 2006. A study of predator-prey models with the Beddington-DeAngelis functional response and impulsive effect. Chaos, Solitons Fractals 27, 237–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Georgescu, P., Chen, L.S., 2008. An impulsive predator-prey system with Beddington-DeAngelis functional response and time delay. Int. J. Biomath. 1(1), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Nundloll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nundloll, S., Mailleret, L. & Grognard, F. Influence of Intrapredatory Interferences on Impulsive Biological Control Efficiency. Bull. Math. Biol. 72, 2113–2138 (2010). https://doi.org/10.1007/s11538-010-9531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9531-6

Keywords

Navigation