Skip to main content

Advertisement

Log in

Modeling the Dynamics of Viral Evolution Considering Competition Within Individual Hosts and at Population Level: The Effects of Treatment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R 0c , has the smaller population number R 0p . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R 0c can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, C.L., Gilchrist, M.A., Coombs, D., 2007. Modeling within-host evolution of HIV: mutation, competition and strain replacement. Bull. Math. Biol. 69, 2361–2385. doi:10.1007/s11538-007-9223-z.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonhoeffer, S., Nowak, M.A., 1994. Mutation and the evolution of virulence. Proc. R. Soc. Lond. B 285, 133–140. doi:10.1098/rspb.1994.0153.

    Article  Google Scholar 

  • Bremermann, H.J., Thieme, H.R., 1988. A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190. doi:10.1007/BF00276102.

    MathSciNet  Google Scholar 

  • Burattini, M.N., Coutinho, F.A.B., Massad, E., 2008. Viral evolution and the competitive exclusion principle. Biosci. Hypotheses 1(3), 168–171. doi:10.1016/j.bihy.2008.05.003.

    Article  Google Scholar 

  • Coombs, D., Gilchrist, M.A., Ball, C.L., 2007. Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor. Popul. Biol. 72, 576–591. doi:10.1016/j.tpb.2007.08.005.

    Article  Google Scholar 

  • Day, T., 2001. Parasite transmission modes and the evolution of virulence. Evolution 55(12), 2389–2400.

    Google Scholar 

  • Dib, L., Bitam, I., Tahri, M., Bensouilah, M., De Meeus, T., 2008. Competitive exclusion between piroplasmosis and anaplasmosis agents within cattle. PLoS Pathog. 4(1), 7.

    Article  Google Scholar 

  • Dixit, N.M., Perelson, A.S., 2005. HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA 102, 8198–8203. doi:10.1073/pnas.0407498102.

    Article  Google Scholar 

  • Gandon, S., Mackinnon, M.J., Nee, S., Read, A.F., 2001. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756. doi:10.1038/414751a.

    Article  Google Scholar 

  • Hochberg, M.E., Holt, R.D., 1990. The coexistence of competing parasites. I. The role of cross-species infection. Am. Nat. 136, 517–541. doi:10.1086/285111.

    Article  Google Scholar 

  • Leontiev, V.V., Maury, W.J., Hadany, L., 2008. Drug induced superinfection in HIV and the evolution of drug resistance. Inf. Gen. Evol. 8, 40–50.

    Article  Google Scholar 

  • Levin, S., Pimentel, D., 1981. Selection of intermediate rates of increase in parasite-host systems. Am. Nat. 117, 308–315. doi:10.1086/283708.

    Article  MathSciNet  Google Scholar 

  • Lipsitch, M., Nowak, M.A., 1995. The evolution of virulence in sexually transmitted HIV/AIDS. J. Theor. Biol. 174, 427–440. doi:10.1006/jtbi.1995.0109.

    Article  Google Scholar 

  • Lipsitch, M., Siller, S., Nowak, M.A., 1996. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50(5), 1729–1741.

    Article  Google Scholar 

  • Manrubia, S.C., Lázaro, E., 2006. Viral evolution. Phys. Life Rev. 3, 65–92. doi:10.1016/j.plrev.2005.11.002.

    Article  Google Scholar 

  • Massad, E., 1997. Transmission rates and the evolution of HIV virulence. Evolution 50(2), 916–918.

    Article  Google Scholar 

  • May, R.M., Nowak, M., 1995. Coinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. B 261, 209–215. doi:10.1098/rspb.1995.0138.

    Article  Google Scholar 

  • Mideo, N., Alizon, S., Day, T., 2008. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23, 511–517.

    Article  Google Scholar 

  • Mosquera, J., Adler, F.R., 1998. Evolution of virulence—a unified framework for coinfection and superinfection. J. Theor. Biol. 195, 293–313. doi:10.1006/jtbi.1998.0793.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M., 2004. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford.

    Google Scholar 

  • Perelson, A.S., 2002. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36. doi:10.1038/nri700.

    Article  Google Scholar 

  • Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Power, A.G., 1996. Competition between viruses in a complex plant-pathogen system. Ecology 77(4), 1004–1010.

    Article  MathSciNet  Google Scholar 

  • Rochow, W.F., 1979. Field variants of barley yellow dwarf virus: detection and fluctuation during twenty years. Phytopathology 69(6), 655–660.

    Article  Google Scholar 

  • Sguanci, L., Bagnoli, F., Lio, P., 2007. Modeling HIV quasispecies evolutionary dynamics. BMC Evol. Biol. 7, S5. doi:10.1186/1471-2148-7-S2-S5.

    Article  Google Scholar 

  • Van Opijnen, T., Jeeninga, R.E., Boerlijst, M.C., Pollakis, G.P., Zetterberg, V., Salminen, M., Berkhout, B., 2004. Human immunodeficiency virus type 1 subtypes have a distinct long terminal repeat that determines the replication rate in a host-cell-specific manner. J. Virol. 78(7), 3675–3683. doi:10.1128/JVI.78.7.3675-3683.2004.

    Article  Google Scholar 

  • Wodarz, D., 2007. Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology. Springer, New York.

    Book  MATH  Google Scholar 

  • Wodarz, D., Levy, D.N., 2007. Human immunodeficiency virus evolution towards reduced replicative fitness in vivo and the development of AIDS. Proc. R. Soc. Lond. B 274, 2481–2490. doi:10.1098/rspb.2007.0413.

    Article  Google Scholar 

  • Zhang, X.S., Holt, J., 2001. Mathematical models of cross protection in the epidemiology of plant-virus diseases. Phytopathology 91(10), 924–934.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Massad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaku, M., Burattini, M.N., Coutinho, F.A.B. et al. Modeling the Dynamics of Viral Evolution Considering Competition Within Individual Hosts and at Population Level: The Effects of Treatment. Bull. Math. Biol. 72, 1294–1314 (2010). https://doi.org/10.1007/s11538-009-9495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9495-6

Navigation