Skip to main content
Log in

Perverse Consequences of Infrequently Culling a Pest

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There are potentially many situations in which creatures will be subject to infrequent but regular culling. In terms of controlling crop pests, some farmers may only be able to afford to apply pesticides occasionally. Alternatively, pesticides may be applied only occasionally to limit their unwelcome side effects, which include pesticide resistance, chemical poisoning of agricultural workers, and environmental degradation. In terms of conservation, some species (such as the red deer in the UK) may be culled occasionally to maintain balances within their ecosystem. However, in this paper we discover, as the culmination of an exploration of adult-stage culling of a creature with juvenile and adult life stages, that, in certain circumstances, regular but infrequent culling will, perversely, increase the average population of the creature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolter, C.J., Dickel, M., van Loon, J.J.A., Visser, J.H., Posthumus, M.A., 1997. Attraction of Colorado Potato Beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23(4), 1003–1023.

    Article  Google Scholar 

  • Choisy, M., Guegán, J.-F., Rohani, P., 2006. Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects. Physica D 223, 26–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke, K., van den Driessche, P., Zou, X., 1999. Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352.

    Article  MATH  MathSciNet  Google Scholar 

  • Deimling, K., 1985. Nonlinear Functional Analysis. Springer, Berlin.

    MATH  Google Scholar 

  • Dixon, A.F.G., 1998. Aphid Ecology: An Optimization Approach. Chapman and Hall, London.

    Google Scholar 

  • Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Clifton-Hadley, R.S., Weil, G., Gettinby, G., Gilks, P., Jenkins, H., Johnston, W.T., Le Fevrel, A.M., McInerney, J.P., Morrison, W.I., 2006. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843–846.

    Article  Google Scholar 

  • East, I.J., Eisemann, C.H., 1993. Vaccination against Lucilia cuprina: The causative agent of sheep blowfly strike. Immunol. Cell Biol. 71, 453–462.

    Article  Google Scholar 

  • Epstein, P.R., 2000. Is global warming harmful to health? Sci. Am. 283, 50–57.

    Article  Google Scholar 

  • Gourley, S.A., Liu, R., Wu, J., 2007. Eradicating vector-borne diseases via age-structured culling. J. Math. Biol. 54(3), 309–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Gubler, D.J., 1998. Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 4(3), 442–450.

    Article  Google Scholar 

  • Gurney, W., Blythe, S., Nisbet, R., 1980. Nicholson’s blowflies revisited. Nature 287, 17–21.

    Article  Google Scholar 

  • Kuang, Y., 1993. Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego.

    MATH  Google Scholar 

  • Lacey, L.A., Frutos, R., Kaya, H.K., Vail, P., 2001. Insect pathogens as biological control agents: do they have a future? Biol. Control 21, 230–248.

    Article  Google Scholar 

  • Miller, G.T., 2004. Sustaining the Earth, 6th edn. Thompson Learning, Pacific Grove.

    Google Scholar 

  • Nicholson, A.J., 1954. An outline of the dynamics of animal populations. Aust. J. Zoology 2, 9–65.

    Article  Google Scholar 

  • Nicholson, A.J., 1957. The self-adjustment of populations to change. Cold Spring Harbour Symp. Quant. Biol. 22, 153–173.

    Google Scholar 

  • Phillips, B.L., Brown, G.P., Shine, R., 2003. Assessing the potential impact of cane toads on Australian snakes. Conserv. Biol. 17(6), 1738–1747.

    Article  Google Scholar 

  • Phillips, B.L., Brown, G.P., Webb, J.K., Shine, R., 2006. Invasion and the evolution of speed in toads. Nature 439, 803.

    Article  Google Scholar 

  • Ricker, W.E., 1954. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623.

    Google Scholar 

  • Ricker, W.E., 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Board Can. 119, 1–300.

    Google Scholar 

  • Seok Kim, K., Sappington, T.W., 2004. Boll Weevil (Anthonomus grandis Boheman) (Coleoptera: Curculionidae) dispersal in the Southern United States: evidence from mitochondrial DNA variation. Environ. Entomol. 33(2), 457–470.

    Article  Google Scholar 

  • Shulgin, B., Stone, L., Agur, Z., 1998. Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 1123–1148.

    Article  MATH  Google Scholar 

  • Simons, R.R.L., Gourley, S.A., 2006. Extinction criteria in stage-structured population models with impulsive culling. SIAM J. Appl. Math. 66(6), 1853–1870.

    Article  MathSciNet  Google Scholar 

  • Smith, H.L., 1995. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence.

    MATH  Google Scholar 

  • Terry, A.J., 2010. Impulsive adult culling of a tropical pest with a stage-structured life cycle. Nonlinear Anal. Real World Appl. 11(2), 645–664.

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme, H.R., 2003. Mathematics in Population Biology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Trenkel, V.M., 2001. Exploring red deer culling strategies using a population-specific calibrated management model. J. Environ. Manag. 621, 37–53.

    Article  Google Scholar 

  • van Aarde, R., Whyte, I., Pimm, S., 1999. Culling and the dynamics of the Kruger National Park African elephant population. Anim. Conserv. 2, 287–294.

    Article  Google Scholar 

  • Witzgall, P., Stelinski, L., Gut, L., Thomson, D., 2008. Codling moth management and chemical ecology. Ann. Rev. Entomol. 53, 503–522.

    Article  Google Scholar 

  • World Health Organization Press Release (2/11/2000). Pulse Polio Campaign Targets over 107 Million Children in 11 States, http://www.searo.who.int/EN/Section316/Section503/Section2373_12973.htm.

  • Zhao, X.-Q., 2003. Dynamical Systems in Population Biology. CMS Books in Mathematics. Springer, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Terry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terry, A.J., Gourley, S.A. Perverse Consequences of Infrequently Culling a Pest. Bull. Math. Biol. 72, 1666–1695 (2010). https://doi.org/10.1007/s11538-009-9492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9492-9

Navigation