Skip to main content
Log in

Spreading Speeds in Slowly Oscillating Environments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we derive exact asymptotic estimates of the spreading speeds of solutions of some reaction-diffusion models in periodic environments with very large periods. Contrarily to the other limiting case of rapidly oscillating environments, there was previously no explicit formula in the case of slowly oscillating environments. The knowledge of these two extremes permits to quantify the effect of environmental fragmentation on the spreading speeds. On the one hand, our analytical estimates and numerical simulations reveal speeds which are higher than expected for Shigesada–Kawasaki–Teramoto models with Fisher-KPP reaction terms in slowly oscillating environments. On the other hand, spreading speeds in very slowly oscillating environments are proved to be 0 in the case of models with strong Allee effects; such an unfavorable effect of aggregation is merely seen in reaction-diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, W.C., 1938. The Social Life of Animals. Norton, New York.

    Google Scholar 

  • Aronson, D.G., Weinberger, H.G., 1975. Nonlinear diffusion in population genetics, combustion and nerve propagation. In: Partial Differential Equations and Related Topics, Lectures Notes Math., vol. 446, pp. 5–49. Springer, New York.

    Chapter  Google Scholar 

  • Bages, M., Martinez, P., Roquejoffre, J.-M., 2008. Dynamique en temps grand pour une classe d’équations de type KPP en milieu périodique. C. R. Acad. Sci. Ser. I Math. 346, 1051–1056.

    MATH  MathSciNet  Google Scholar 

  • Berec, L., Angulo, E., Courchamp, F., 2007. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191.

    Article  Google Scholar 

  • Berestycki, H., Hamel, F., 2002. Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032.

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Hamel, F., Nadirashvili, N., 2005a. The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena. Commun. Math. Phys. 253(2), 451–480.

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Hamel, F., Nadirashvili, N., 2005b. The speed of propagation for KPP type problems. I: Periodic framework. J. Eur. Math. Soc. 7(2), 173–213.

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Hamel, F., Roques, L., 2005c. Analysis of the periodically fragmented environment model: I—Species persistence. J. Math. Biol. 51(1), 75–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Hamel, F., Roques, L., 2005d. Analysis of the periodically fragmented environment model: II—Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 84(8), 1101–1146.

    MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Hamel, F., Nadin, G., 2008. Asymptotic spreading in heterogeneous diffusive excitable media. J. Funct. Anal. 255(9), 2146–2189.

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson, M., 1983. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44.

  • Cantrell, R.S., Cosner, C., 2003. Spatial Ecology via Reaction-Diffusion Equations. Wiley, New York.

    MATH  Google Scholar 

  • Dennis, B., 1989. Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538.

    MATH  MathSciNet  Google Scholar 

  • El Smaily, M., 2008. Pulsating travelling fronts: asymptotics and homogenization regimes. Eur. J. Appl. Math. 19(4), 393–434.

    MATH  Google Scholar 

  • El Smaily, M., Hamel, F., Roques, L., 2009. Homogenization and influence of fragmentation in a biological invasion model. Discrete Contin. Dyn. Syst., Ser. A 25, 321–342.

    Article  MATH  Google Scholar 

  • Fife, P.C., 1979. Long-time behavior of solutions of bistable non-linear diffusion equations. Arch. Ration. Mech. Anal. 70(1), 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, R.A., 1937. The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369.

    Google Scholar 

  • Freidlin, M., 1985. Limit-theorems for large deviations and reaction-diffusion equations. Ann. Probab. 13(3), 639–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Freidlin, M., Gärtner, J., 1979. On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl. 20, 1282–1286.

    Google Scholar 

  • Groom, M.J., 1998. Allee effects limit population viability of an annual plant. Am. Nat. 151(6), 487–496.

    Article  Google Scholar 

  • Gross, L.J., Rose, K.A., Rykiel, E.J., Van Winkle, W., Werner, E.E., 1992. Individual-based Modeling, pp. 511–552. Chapman and Hall, London.

    Google Scholar 

  • Hamel, F., 2008. Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J. Math. Pures Appl. 89, 355–399.

    MATH  MathSciNet  Google Scholar 

  • Hamel, F., Roques, L., 2010. Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc. (to appear).

  • Hamel, F., Nadin, G., Roques, L., 2009. A viscosity solution method for the spreading speed formula in slowly varying media. Preprint.

  • Heinze, S., 2005. Large convection limits for KPP fronts. Preprint, MPI, Leipzig.

  • Kareiva, P.M., Shigesada, N., 1983. Analyzing insect movement as a correlated random-walk. Oecologia 56(2–3), 234–238.

    Article  Google Scholar 

  • Kato, T., 1984. Perturbation Theory for Linear Operators, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Kawasaki, K., Shigesada, N., 2007. An integrodifference model for biological invasions in a periodically fragmented environment. Jpn. J. Ind. Appl. Math. 24(1), 3–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N., 2003. Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64(3), 291–302.

    Article  MATH  Google Scholar 

  • Kinezaki, N., Kawasaki, K., Shigesada, N., 2006. Spatial dynamics of invasion in sinusoidally varying environments. Popul. Ecol. 48(4), 263–270.

    Article  Google Scholar 

  • Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S., 1937. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Mosc., Sér. Int. A 1, 1–26.

    Google Scholar 

  • Liang, X., Lin, X., Matano, H., 2010. A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations. Trans. Am. Math. Soc. (to appear).

  • Marsh, L.M., Jones, R.E., 1988. The form and consequences of random-walk movement models. J. Theor. Biol. 133(1), 113–131.

    Article  Google Scholar 

  • Mccarthy, M.A., 1997. The Allee effect, finding mates and theoretical models. Ecol. Model. 103(1), 99–102.

    Article  Google Scholar 

  • Mollison, D., 1991. Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287.

    Article  MATH  Google Scholar 

  • Nadin, G., 2009. Travelling fronts in space-time periodic media. J. Math. Pures Appl. 92, 232–262.

    MATH  MathSciNet  Google Scholar 

  • Nadin, G., 2010. The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator. SIAM J. Math. Anal. (to appear).

  • Nolen, J., Xin, J., 2005. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete Contin. Dyn. Syst., Ser. A 13, 1217–1234.

    Article  MATH  MathSciNet  Google Scholar 

  • Nolen, J., Rudd, M., Xin, J., 2005. Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Theor. Popul. Biol. 2, 1–24.

    MATH  MathSciNet  Google Scholar 

  • Okubo, A., Levin, S.A., 2002. Diffusion and Ecological Problems—Modern Perspectives, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Roques, L., Hamel, F., 2007. Mathematical analysis of the optimal habitat configurations for species persistence. Math. Biosci. 210(1), 34–59.

    Article  MATH  MathSciNet  Google Scholar 

  • Roques, L., Roques, A., Berestycki, H., Kretzschmar, A., 2008. A population facing climate change: joint influences of Allee effects and environmental boundary geometry. Popul. Ecol. 50(2), 215–225.

    Article  Google Scholar 

  • Ryzhik, L., Zlatos, A., 2007. KPP pulsating front speed-up by flows. Commun. Math. Sci. 5, 575–593.

    MATH  MathSciNet  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution. Oxford University Press, London.

    Google Scholar 

  • Shigesada, N., Kawasaki, K., Teramoto, E., 1986. Traveling periodic-waves in heterogeneous environments. Theor. Popul. Biol. 30(1), 143–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Stokes, A.N., 1976. On two types of moving front in quasilinear diffusion. Math. Biosci. 31, 307–315.

    Article  MATH  MathSciNet  Google Scholar 

  • Turchin, P., 1998. Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer, Sunderland.

    Google Scholar 

  • van den Bosch, F., Metz, J.A.J., Diekmann, O., 1990. The velocity of spatial population expansion. J. Math. Biol. 28, 529–565.

    Article  MATH  MathSciNet  Google Scholar 

  • van Saarloos, W., 2003. Front propagation into unstable states. Phys. Rep. 386, 29–222.

    Article  MATH  Google Scholar 

  • Vázquez, J.L., 2007. The Porous Medium Equation. Mathematical Theory. Oxford University Press, London.

    MATH  Google Scholar 

  • Veit, R.R., Lewis, M.A., 1996. Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. Am. Nat. 148, 255–274.

    Article  Google Scholar 

  • Weinberger, H.F., 2002. On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol. 45, 511–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Xin, X., 1991. Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity. Ind. Univ. Math. J. 40, 995–1008.

    Article  Google Scholar 

  • Xin, J., 2000. Front propagation in heterogeneous media. SIAM Rev. 42, 161–230.

    Article  MathSciNet  Google Scholar 

  • Zlatos, A., 2010. Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. Arch. Rat. Mech. Anal. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Roques.

Additional information

The authors are supported by the French “Agence Nationale de la Recherche” within the projects ColonSGS, PREFERED, and URTICLIM (third author). The first author is also indebted to the Alexander von Humboldt Foundation for its support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamel, F., Fayard, J. & Roques, L. Spreading Speeds in Slowly Oscillating Environments. Bull. Math. Biol. 72, 1166–1191 (2010). https://doi.org/10.1007/s11538-009-9486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9486-7

Navigation