Skip to main content
Log in

Mathematical Model of the Formation of Morphogen Gradients Through Membrane-Associated Non-receptors

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The importance of morphogens is a central concept in developmental biology. Multiple-fate patterning and the robustness of the morphogen gradient are essential for embryo development. The ways by which morphogens diffuse from a local source to form long distance gradients can differ from one morphogen to the other, and for the same morphogen in different organs. This paper will study the mechanism by which morphogens diffuse through the aid of membrane-associated non-receptors and will investigate how the membrane-associated non-receptors help the morphogen to form long distance gradients and to achieve good robustness. Such a mechanism has been reported for some morphogens that are rapidly turned over. We will establish a set of reaction-diffusion equations to model the dynamical process of morphogen gradient formation. Under the assumption of rapid morphogen degradation, we discuss the existence, uniqueness, local stability, approximation solution, and the robustness of the steady-state gradient. The results in this paper show that when the morphogen is rapidly turned over, diffusion of the morphogen through membrane-associated non-receptors is a possible strategy to form a long distance multiple-fate gradient that is locally stable and is robust against the changes in morphogen synthesis rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter, M., Basler, K., 2007. The decapentaplegic morphogen gradient: from pattern formation to growth regulatin. Nat. Rev. Genet. 8, 663–674.

    Article  Google Scholar 

  • Akiyama, T., Kamimura, K., Firkus, C., Takeo, S., Shimmi, O., Nakato, H., 2008. Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev. Biol. 313, 408–419.

    Article  Google Scholar 

  • Baeg, G., Selva, E.M., Goodman, R.M., Dasgupta, R., Perrimon, N., 2004. The Wingless morphogen gradient is established by the cooperative active of Frizzled and heparan sulfate proteoglycan receptors. Dev. Biol. 276, 89–100.

    Article  Google Scholar 

  • Bangi, E., Wharton, K., 2006. Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing pattering. Dev. Biol. 295, 178–193.

    Article  Google Scholar 

  • Barbieri, G., Brunetti, A., Granato, T., Bernardo, P., Drioli, E., 2005. Engineering evaluations of a catalytic membrane reactor for the water gas shift reaction. Ind. Eng. Chem. Res. 44, 7676–7683.

    Article  Google Scholar 

  • Belenkaya, T.Y., Han, C., Yan, D., Opoka, R.J., Khodoun, M., Liu, H., Lin, X., 2004. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244.

    Article  Google Scholar 

  • Bier, E., 2000. Drawing lines in the Drosophila wing: initiation of wing vein development. Curr. Opin. Genet. Dev. 10, 393–398.

    Article  Google Scholar 

  • Bollenbach, T., Kruse, K., Pantazis, P., González-Gaitán, F.F., 2007. Morphogen transport in epithelia. Phys. Rev. E 75, 011901.

    Article  Google Scholar 

  • Bornemann, D.J., Duncan, J.E., Staatz, W., Selleck, S., Warrior, S., 2004. Albrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938.

    Article  Google Scholar 

  • Crozatier, M., Blise, B., Vincent, A., 2004. Patterns in evolution: veins of the Drosophila wing. Trends Genet. 20, 498–505.

    Article  Google Scholar 

  • de Celis, J.F., 2003. Pattern formation in the Drosophila wing: the development of the veins. BioEssays 25, 443–451.

    Article  Google Scholar 

  • Eldar, A., Rosin, D., Shilo, B., Barkai, N., 2003. Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646.

    Article  Google Scholar 

  • Entchev, E.V., Schwabedissen, A., González-Gaitán, M., 2000. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991.

    Article  Google Scholar 

  • Fujise, M., Takeo, S., Kamimura, K., Matsuo, T., Aigaki, T., Izumi, S., Nakato, H., 2003. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522.

    Article  Google Scholar 

  • Goentoro, L.A., Reeves, G.T., Kowal, C.P., Martinelli, L., Schüpbach, T., Shvartsman, S.Y., 2006. Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev. Cell 11, 263–272.

    Article  Google Scholar 

  • Gurdon, J.B., Bourillot, P.-Y., 2001. Morphogen gradient interpretation. Nature 413, 797–803.

    Article  Google Scholar 

  • Haerry, T.E., Khalsa, O., O’Connor, M.B., Wharton, K.A., 1998. Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and pattering in Drosophila. Development 125, 3977–3987.

    Google Scholar 

  • Han, C., Belenkaya, T., Khodoun, M., Tauchi, M., Lin, X., Lin, X., 2004. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563–1575.

    Article  Google Scholar 

  • Hufnagel, L., Kreuger, J., Cohen, S.M., Shraiman, B.I., 2006. On the role of glypicans in the process of morphogen gradient formation. Dev. Biol. 300, 512–522.

    Article  Google Scholar 

  • Kerszberg, M., 1996. Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. J. Theor. Biol. 183, 95–104.

    Article  Google Scholar 

  • Kerszberg, M., Wolpert, L., 1998. Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–114.

    Article  Google Scholar 

  • Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Jülicher, F., González-Gaitán, M., 2007. Kinetics of morphogen gradient formation. Science 315, 521–525.

    Article  Google Scholar 

  • Kirkpatrick, C.A., Selleck, S.B., 2007. Heparan sulfate proteoglycans at a glance. J. Cell Sci. 120, 1829–1832.

    Article  Google Scholar 

  • Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, B., 2004. Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein. Dev. Cell 7, 513–523.

    Article  Google Scholar 

  • Kruse, K., Pantazis, P., Bollenbach, T., Jülicher, F., González-Gaitán, M., 2004. Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856.

    Article  Google Scholar 

  • Lander, A.D., 2007. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256.

    Article  Google Scholar 

  • Lander, A.D., Nie, Q., Wan, F.Y.M., 2002. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796.

    Article  Google Scholar 

  • Lander, A.D., Wan, F.Y.M., Elledge, H.M., Mizutani, C.M., Bier, E., Nie, Q., 2005. Diverse paths to morphogen gradient robustness. Preprint.

  • Lander, A.D., Nie, Q., Wan, F.Y.M., 2007. Membrane-associated non-receptors and morphogen gradients. Bull. Math. Biol. 69, 33–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Lecuit, T., Cohen, S.M., 1998. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907.

    Google Scholar 

  • Lei, J., Lander, A.D., Wan, F., Nie, Q., 2005. Robustness of morphogen gradient. Preprint.

  • Lou, Y., Nie, Q., Wan, F.Y.M., 2004. Nonlinear eigenvalue problems in the stability analysis of morphogen gradients. Stud. Appl. Math. 113, 183–215.

    Article  MATH  MathSciNet  Google Scholar 

  • Meyers, J., Craig, J., Odde, D., 2006. Potential for control of signaling pathways via cell size and shape. Curr. Biol. 16, 1685–1693.

    Article  Google Scholar 

  • Morimura, S., Maves, L., Chen, Y., Hoffmann, F.M., 1996. Decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression. Dev. Biol. 177, 136–151.

    Article  Google Scholar 

  • Renardy, M., Rogers, R.C., 2004. An Introduction to Partial Differential Equation. Springer, Berlin.

    Google Scholar 

  • Sattinger, D.H., 1972. Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21, 979–1000.

    Article  MATH  MathSciNet  Google Scholar 

  • Strigini, M., Cohen, S.M., 2000. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300.

    Article  Google Scholar 

  • Tabata, T., 2001. Genetics of morphogen. Nat. Rev. Genet. 2, 620–630.

    Article  Google Scholar 

  • Teleman, A.A., Cohen, S.M., 2000. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980.

    Article  Google Scholar 

  • The, I., Bellaiche, Y., Perrimon, N., 1999. Hedghog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639.

    Article  Google Scholar 

  • Vincent, J., Dubois, L., 2002. Morphogen transport along epithelia and integrated trafficking problem. Dev. Cell 3, 615–623.

    Article  Google Scholar 

  • Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhi Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, J., Song, Y. Mathematical Model of the Formation of Morphogen Gradients Through Membrane-Associated Non-receptors. Bull. Math. Biol. 72, 805–829 (2010). https://doi.org/10.1007/s11538-009-9470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9470-2

Keywords

Navigation