Skip to main content

Advertisement

Log in

Modeling Spatial Spread of Infectious Diseases with a Fixed Latent Period in a Spatially Continuous Domain

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, with the assumptions that an infectious disease in a population has a fixed latent period and the latent individuals of the population may diffuse, we formulate an SIR model with a simple demographic structure for the population living in a spatially continuous environment. The model is given by a system of reaction-diffusion equations with a discrete delay accounting for the latency and a spatially non-local term caused by the mobility of the individuals during the latent period. We address the existence, uniqueness, and positivity of solution to the initial-value problem for this type of system. Moreover, we investigate the traveling wave fronts of the system and obtain a critical value c * which is a lower bound for the wave speed of the traveling wave fronts. Although we can not prove that this value is exactly the minimal wave speed, numeric simulations seem to suggest that it is. Furthermore, the simulations on the PDE model also suggest that the spread speed of the disease indeed coincides with c *. We also discuss how the model parameters affect c *.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., Trewhella, W.J., 1985. Population dynamics of the badger (Meles meles) and the epidemiology of bovine tuberculosis (mycobacterium bovis). Philos. Trans. R. Soc. Lond. B 310, 327–381.

    Article  Google Scholar 

  • Arino, J., van den Driessche, P., 2003a. A multi-city epidemic model. Math. Popul. Stud. 10, 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  • Arino, J., van den Driessche, P., 2003b. The basic reproduction number in a multi-city compartmental epidemic model. LNCIS 294, 135–142.

    Google Scholar 

  • Arino, J., van den Driessche, P., 2006. Metapopulation epidemic models, a survey. Fields Inst. Commun. 48, 1–12.

    Google Scholar 

  • Barlow, N.D., 2000. Non-linear transmission and simple models for bovine tuberculosis. J. Anim. Ecol. 69, 703–713.

    Article  Google Scholar 

  • Brauer, F., van den Driessche, P., 2001. Models for transmission of disease with immigration of infectives. Math. Biosci. 171, 143–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer, F., van den Driessche, P., Wu, J., 2008. Mathematical Epidemiology. Lecture Notes in Mathematics. Springer, Berlin/Heidelberg.

    Book  Google Scholar 

  • Castillo-Chavez, C., Yakubu, A.A., 2001. Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53.

    Article  MATH  MathSciNet  Google Scholar 

  • Daners, D., Medina, P.K., 1992. Abstract evolution equations, periodic problems and applications. In: Pitman Research Notes in Mathematics, vol. 279. Longman, Harlow.

    Google Scholar 

  • Dunbar, S., 1981. Travelling wave solutions of diffusive Lotka–Volterra interaction equations. Ph.D. thesis, Univ. Minnesota, Minneapolis.

  • Dunbar, S., 1983. Travelling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Dunbar, S., 1984. Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in R 4. Trans. Am. Math. Soc. 286, 557–594.

    Article  MATH  MathSciNet  Google Scholar 

  • Gardner, R.A., 1984. Existence of travelling wave solutions of predator-prey systems via the connection index. SIAM J. Appl. Math. 44, 56–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Garnett, B.T., Delahay, R.J., Roper, T.J., 2002. Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (mycobacterium bovis) transmission to cattle. Proc. R. Soc. B 269, 1487–1491.

    Article  Google Scholar 

  • Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42, 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  • Hsieh, Y.-H., van den Driessche, P., Wang, L., 2007. Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69, 1355–1375.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, J., Lu, G., Ruan, S., 2003. Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol. 46, 132–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, J., Zou, X., 2009a. Generalization of the Kermack-McKendrick SIR model to a patchy environment for a disease with latency. Math. Model. Nat. Phenom. 4(2), 92–118.

    MATH  MathSciNet  Google Scholar 

  • Li, J., Zou, X., 2009b. An epidemic model with non-local infections on a patchy environment. J. Math. Biol. doi:10.1007/s00285-009-0280-9, in press.

    Google Scholar 

  • Liang, X., Zhao, X.-Q., 2007. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Martin Jr, R.H., Smith, H.L., 1990. Abstract functional-differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44.

    Article  Google Scholar 

  • Metz, J.A.J., Diekmann, O. (Eds.), 1986. The Dynamics of Physiologically Structured Populations. Springer, New York.

    MATH  Google Scholar 

  • Murray, J.D., 2002. Mathematical Biology, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  • Salmani, M., van den Driessche, P., 2006. A model for disease transmission in a patchy environment. Discrete Contin. Dyn. Syst. B 6, 185–202.

    MATH  Google Scholar 

  • Thoen, C.O., Karlson, A.G., Himes, E.M., 1984. Mycobacterium tuberculosis complex. In: The Mycobacteria, A Sourcebook, pp. 1209–1235. Dekker, New York.

    Google Scholar 

  • van den Driessche, P., Wang, L., Zou, X., 2007. Modelling disease with latency and replase. Math. Biosci. Eng. 4, 205–219.

    MATH  MathSciNet  Google Scholar 

  • Wang, W., Mulone, G., 2003. Threshold of disease transmission on a patch environment. J. Math. Anal. Appl. 285, 321–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., Zhao, X.-Q., 2004. An epidemic model in a patchy environment. Math. Biosci. 190, 97–112.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., Zhao, X.-Q., 2005. An age-structured epidemic model in a patchy environment. SIAM J. Appl. Math. 65, 1597–1614.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., Zhao, X.-Q., 2006. An epidemic model with population dispersal and infection period. SIAM J. Appl. Math. 66, 1454–1472.

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, J., 1996. Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Science, vol. 119. Springer, Berlin.

    MATH  Google Scholar 

  • Wu, J., Zou, X., 2001. Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Differ. Equ. 13, 651–687.

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, X., 2002. Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type. J. Comput. Appl. Math. 146, 309–321.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Additional information

Research supported by NSERC, by NCE-MITACS of Canada and by PREA of Ontario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zou, X. Modeling Spatial Spread of Infectious Diseases with a Fixed Latent Period in a Spatially Continuous Domain. Bull. Math. Biol. 71, 2048–2079 (2009). https://doi.org/10.1007/s11538-009-9457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9457-z

Keywords

Navigation