Skip to main content

Advertisement

Log in

Modelling Disease Introduction as Biological Control of Invasive Predators to Preserve Endangered Prey

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Invasive species are a significant cause of bio-diversity loss particularly in island ecosystems. It has been suggested to release pathogenic parasites as an efficient control measure of these mostly immune-naïve populations. In order to explore the potential impacts of such bio-control approach, we construct and investigate mathematical models describing disease dynamics in a host population that acts as a predator embedded in a simple food chain. The consequences of Feline Immunodeficiency Virus (FIV) introduction into a closed ecosystem are addressed using a bi-trophic system, comprising an indigenous prey (birds) and an introduced predator (cats). Our results show that FIV is unlikely to fully eradicate cats on sub-Antarctic islands, but it can be efficient in depressing their population size, allowing for the recovery of the endangered prey. Depending on the ecological setting and disease transmission mode (we consider proportionate mixing as well as mass action), successful pathogen invasion can induce population oscillations that are not possible in the disease-free predator–prey system. These fluctuations can be seen as a mixed blessing from a management point of view. On the one hand, they may increase the extinction risk of the birds. On the other hand, they provide an opportunity to eradicate cats more easily in combination with other methods such as trapping or culling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., 1982. Theoretical basis for the use of pathogens as biological control agents of pest species. Parasitology 84, 3–33.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., 1981. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. B 291, 451–524.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., 1986. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314, 533–570.

    Article  Google Scholar 

  • Atkinson, I.A.E., 1988. Opportunities for ecological restoration. N.Z. J. Ecol. 11, 1–12.

    Google Scholar 

  • Atkinson, I.A.E., 1989. Introduced animals and extinction. In: Western, D., Pearl, M.C. (Eds.), Conservation for the Twenty-First Century, pp. 54–75. Oxford University Press, Oxford.

    Google Scholar 

  • Auger, P., Mchich, R., Chowdhury, T., Sallet, G., Tchuente, M., Chattopadhyay, J., 2009. Effects of a disease affecting a predator on the dynamics of a predator–prey system. J. Theor. Biol. doi:10.1016/j.jtbi.2008.10.030.

    MATH  Google Scholar 

  • Bax, N., Carlton, J.T., Mathews-Amos, A., Haedrich, R.L., Howarth, F.G., Purcell, J.E., Rieser, A., Gray, A., 2001. The control of biological invasions in the world’s oceans. Conserv. Biol. 15, 1234–1246.

    Article  Google Scholar 

  • Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J., 2002. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol. Infect. 129, 147–153.

    Article  Google Scholar 

  • Berruti, A., Griffiths, A.M., Imber, M.J., Schramm, M., Sinclair, J.C., 2000. Status of seabirds at Prince Edward Island. S. Afr. J. Antarct. Res. 10, 32–33.

    Google Scholar 

  • Berthier, K., Langlais, M., Auger, P., Pontier, D., 2000. Dynamics of a feline virus with two transmission modes within exponentially growing host populations. Proc. R. Soc. Lond. B 267, 2049–2056.

    Article  Google Scholar 

  • Bester, M.N., Bloomer, J.P., van Aarde, R.J., Erasmus, B.H., van Rensburg, P.J.J., Skinner, J.D., Howell, P.G., Naude, T.W., 2002. A review of the successful eradication of feral cats from sub-Antarctic Marion Island, Southern Indian Ocean. S. Afr. J. Wildl. Res. 32, 65–73.

    Google Scholar 

  • Brooke, R.K., Cooper, J., Hockey, P.A.R., Ryan, P.G., Sinclair, J.C., Suter, W., Tree, A.J., 1988. Distribution, population size and conservation of the Antarctic tern Sterna vittata in southern Africa. Cormorant 16, 107–113.

    Google Scholar 

  • Chaphuis, J.L., Boussès, P., Barnaud, G., 1994. Alien mammals, impact and management in the French Subantarctic Islands. Biol. Conserv. 67, 97–104.

    Article  Google Scholar 

  • Chornesky, E.A., Randal, J.M., 2003. The threat of invasive alien species to biological diversity: setting a future course. Ann. M. Bot. Gard. 90, 67–76.

    Article  Google Scholar 

  • Cleaveland, S., Thirgood, S., Laurenson, K., 1999. Pathogens as allies in island conservation? Trends Ecol. Evol. 14, 83–84.

    Article  Google Scholar 

  • Cooper, J., Brown, C.R., 1990. Ornithological research at the sub-Antarctic Prince Edward Islands: a review of achievements. S. Afr. J. Antarct. Res. 20, 40–57.

    Google Scholar 

  • Cooper, J.A., Marais, A.V.N., Bloomer, J.P., Bester, M.N., 1995. A success story: breeding of burrowing petrels (Procellariidae) before and after the eradication of feral cats Felis catus at subantarctic Marion Island. Mar. Ornithol. 23, 33–37.

    Google Scholar 

  • Courchamp, F., Sugihara, G., 1999. Modeling the biological control of an alien predator to protect island species from extinction. Ecol. Appl. 9, 112–123.

    Article  Google Scholar 

  • Courchamp, F., Pontier, D., Langlais, M., Artois, M., 1995. Population dynamics of Feline Immunodeficiency Virus within cat populations. J. Theor. Biol. 175, 553–560.

    Article  Google Scholar 

  • Courchamp, F., Yoccoz, N.G., Artois, M., Pontier, D., 1998. At-risk individuals in Feline Immunodeficiency Virus epidemiology: Evidence from a multivariate approach in a natural population of domestic cats (Felis catus). Epidemiol. Infect. 121, 227–236.

    Article  Google Scholar 

  • Courchamp, F., Say, L., Pontier, D., 2000. Transmission of Feline Immunodeficiency Virus in a population of cats (Felis catus). Wildl. Res. 27, 603–611.

    Article  Google Scholar 

  • de Castro, F., Bolker, B., 2005. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126.

    Article  Google Scholar 

  • Didham, R.K., Tylianakis, J.M., Hutchinson, M.A., Ewers, R.M., Gemmell, N.J., 2005. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474.

    Article  Google Scholar 

  • Dobson, A.P., 1988. Restoring island ecosystems: the potential of parasites to control introduced mammals. Conserv. Biol. 2, 31–39.

    Article  Google Scholar 

  • Fan, M., Kuang, Y., Feng, Z., 2005. Cats protecting birds revisited. Bull. Math. Biol. 67, 1081–1106.

    Article  MathSciNet  Google Scholar 

  • Fenton, A., Rands, S.A., 2006. The impact of parasite manipulation and predator foraging behavior on predator-prey communities. Ecology 87, 2832–2841.

    Article  Google Scholar 

  • Fromont, E., Pontier, D., Langlais, M., 1998. Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure. Proc. R. Soc. Lond. B 265, 1097–1104.

    Article  Google Scholar 

  • Ginzburg, L.R., 1998. Assuming reproduction to be a function of consumption raises doubts about some popular predator–prey models. J. Anim. Ecol. 67, 325–327.

    Article  Google Scholar 

  • Granadeiro, J.P., Dias, M.P., Rebelo, R., Santos, C.D., Catry, P., 2006. Numbers and population trends of Cory’s Shearwater Calonectris diomedea at Selvagem Grande, Northeast Atlantic. Waterbirds 29, 56–60.

    Article  Google Scholar 

  • Grenfell, B.T., Dobson, A.P. (Eds.), 1995. Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Gurevitch, J., Padilla, D.K., 2004. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474.

    Article  Google Scholar 

  • Han, L., Ma, Z., Hethcote, H.W., 2001. Four predator prey models with infectious diseases. Math. Comput. Model. 34, 849–858.

    Article  MATH  MathSciNet  Google Scholar 

  • Haque, M., Venturino, E., 2007. An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809.

    Article  MATH  MathSciNet  Google Scholar 

  • Hatcher, M.J., Dick, J.T.A., Dunn, A.M., 2006. How parasites affect interactions between competitors and predators. Ecol. Lett. 9, 1253–1271.

    Article  Google Scholar 

  • Hilker, F.M., Schmitz, K., 2008. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306.

    Article  Google Scholar 

  • Hilker, F.M., Langlais, M., Petrovskii, S.V., Malchow, H., 2007. A diffusive SI model with Allee effect and application to FIV. Math. Biosci. 206, 61–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Hilker, F.M., Langlais, M., Malchow, H., 2009. The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat. 173, 72–88.

    Article  Google Scholar 

  • Holt, R.D., Polis, G.A., 1997. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764.

    Article  Google Scholar 

  • Kot, M., 2001. Elements of Mathematical Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Krajick, K., 2005. Winning the war against island invaders. Science 310, 1410–1413.

    Article  Google Scholar 

  • Le Corre, M., 2008. Cats, rats and seabirds. Nature 451, 134–135.

    Article  Google Scholar 

  • Liberg, O., Sandell, M., Pontier, D., Natoli, E., 2000. Density, spatial organisation and reproductive tactics in the domestic cat and other felids. In: Turner, D.C., Bateson, P. (Eds.), The Domestic Cat: The Biology of Its Behaviour, 2nd edn., pp. 119–147. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lockwood, J.L., Hoopes, M.F., Marchetti, M., 2007. Invasion Ecology. Blackwell Publishing, Oxford.

    Google Scholar 

  • Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M., Bazzaz, F.A., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710.

    Article  Google Scholar 

  • May, R.M., Hassell, M.P., 1988. Population dynamics and biological control. Philos. Trans. R. Soc. Lond. B 318, 129–169.

    Article  Google Scholar 

  • McCallum, H., Barlow, N., Hone, J., 2001. How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300.

    Article  Google Scholar 

  • Moors, P.J., Atkinson, I.A.E., 1984. Predation on seabirds by introduced animals, and factors affecting its severity. In: Croxall, P.J., Evans, P.G.H., Schreiber, R.W. (Eds.), Status and Conservation of the World’s Seabirds, vol. 2, pp. 667–690. ICBP Technical Publications, Cambridge.

    Google Scholar 

  • Murdoch, W.W., Briggs, C.J., 1996. Theory for biological control: recent developments. Ecology 77, 2001–2013.

    Article  Google Scholar 

  • Nogales, M., Martín, A., Tershy, B.R., Josh Donlan, C., Veitch, D., Puerta, N., Wood, B., Alonso, J., 2004. A review of feral cat eradication on islands. Conserv. Biol. 18, 310–319.

    Article  Google Scholar 

  • Pimm, S.L., 1982. Food Webs. Chapman and Hall, London.

    Google Scholar 

  • Rosenzweig, M.L., 1969. Why the prey curve has a hump. Am. Nat. 103, 81–87.

    Article  Google Scholar 

  • Rounsevell, D.E., Copson, G.R., 1982. Growth rate and recovery of a king penguin, Aptenodytes patagonicus, population after exploitation. Aust. Wildl. Res. 9, 519–525.

    Article  Google Scholar 

  • Ryan, P.G., 1987. The distribution, population size and foraging behaviour of Kerguelen terns at the Prince Edwards Islands. S. Afr. J. Antarct. Res. 17(2), 163–166.

    Google Scholar 

  • Sæther, B.E., Engen, S., 2002. Pattern of variation in avian population growth rates. Philos. Trans. R. Soc. Lond. B 357, 1185–1195.

    Article  Google Scholar 

  • Sax, D.F., Brown, J.H., 2000. The paradox of invasion. Glob. Ecol. Biogeogr. 9, 363–371.

    Article  Google Scholar 

  • Say, L., Gaillard, J.M., Pontier, D., 2002. Spatio-temporal variation in cat population density in a Sub-Antarctic environment. Polar Biol. 25, 90–95.

    Google Scholar 

  • Schramm, M., 1986. Burrow densities and nest site preferences of petrels (Procellariidae) at the Prince Edward Islands. Polar Biol. 6, 63–70.

    Article  Google Scholar 

  • Siegfried, W.R., 1978. Ornithological research at the Prince Edward islands: a review of progress. S. Afr. Antarktis Nave 8, 30–34.

    Google Scholar 

  • Strong, D.R., Pemberton, R.W., 2000. Biological control of invading species—risk and reform. Science 288, 1969–1970.

    Article  Google Scholar 

  • Tanabe, K., Namba, T., 2005. Omnivory creates chaos in simple food web models. Ecology 86, 3411–3414.

    Article  Google Scholar 

  • Turchin, P., 2003. Complex Population Dynamics. A Theoretical/Empirical Synthesis. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Van Aarde, R.J., 1979. Distribution and density of the feral house cat Felis catus at Marion Island. S. Afr. J. Antarct. Res. 9, 14–19.

    Google Scholar 

  • Van Aarde, R.J., 1980. The diet and feeding behaviour of feral cats, Felis catus at Marion Island. S. Afr. J. Wildl. Res. 10(3/4), 123–128.

    Google Scholar 

  • Van Aarde, R.J., 1983. Demographic parameters of the feral cat Felis catus population at Marion Island. S. Afr. J. Wildl. Res. 13(1), 12–16.

    Google Scholar 

  • Van Rensburg, P.J.J., Bester, M.N., 1988. The effect of cat Felis catus predation on three breeding Procellariidae species on Marion Island. S. Afr. J. Zool. 23(4), 301–305.

    Google Scholar 

  • Van Rensburg, P.J.J., Skinner, J.D., Van Aarde, R.J., 1987. Effects of feline panleucopenia on the population characteristics of feral cats on Marion Island. J. Appl. Ecol. 24, 63–73.

    Article  Google Scholar 

  • Venturino, E., 1994. The influence of diseases on Lotka-Volterra systems. Rocky M. J. Math. 24(1), 381–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Venturino, E., 2002. Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205.

    Article  MATH  Google Scholar 

  • Volterra, V., 1931. Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars, Paris.

    Google Scholar 

  • Waage, J.K., Greathead, D.J., 1988. Biological control: challenges and opportunities. Philos. Trans. R. Soc. Lond. B 318, 111–128.

    Article  Google Scholar 

  • Wilcox, C., Donlan, C.J., 2007. Compensatory mitigation as a solution to fisheries bycatch-biodiversity conservation conflicts. Front. Ecol. Environ. 5, 325–331.

    Article  Google Scholar 

  • Williams, A.J., Burger, A.E., Berruti, A., Siegfried, W.R., 1975. Ornithological research on Marion Island 1974–1975. S. Afr. Antarktis Nave 5, 48–50.

    Google Scholar 

  • Williams, A.J., Siegfried, W.R., Burger, A.E., Berruti, A., 1979. The Prince Edward Islands: a sanctuary for seabirds in the Southern Ocean. Biol. Conserv. 15, 59–71.

    Article  Google Scholar 

  • Xiao, Y., Van Den Bosch, F., 2003. The dynamics of an eco-epidemic model with biological control. Ecol. Model. 168, 203–214.

    Article  Google Scholar 

  • Zavaleta, E.S., Hobbs, R.J., Mooney, H.A., 2001. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Hilker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, N.M., Hilker, F.M. Modelling Disease Introduction as Biological Control of Invasive Predators to Preserve Endangered Prey. Bull. Math. Biol. 72, 444–468 (2010). https://doi.org/10.1007/s11538-009-9454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9454-2

Keywords

Navigation