Skip to main content

Advertisement

Log in

Numerical Simulation of Blood Flow Through Microvascular Capillary Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A numerical method is implemented for computing blood flow through a branching microvascular capillary network. The simulations follow the motion of individual red blood cells as they enter the network from an arterial entrance point with a specified tube hematocrit, while simultaneously updating the nodal capillary pressures. Poiseuille’s law is used to describe flow in the capillary segments with an effective viscosity that depends on the number of cells residing inside each segment. The relative apparent viscosity is available from previous computational studies of individual red blood cell motion. Simulations are performed for a tree-like capillary network consisting of bifurcating segments. The results reveal that the probability of directional cell motion at a bifurcation (phase separation) may have an important effect on the statistical measures of the cell residence time and scattering of the tube hematocrit across the network. Blood cells act as regulators of the flow rate through the network branches by increasing the effective viscosity when the flow rate is high and decreasing the effective viscosity when the flow rate is low. Comparison with simulations based on conventional models of blood flow regarded as a continuum indicates that the latter underestimates the variance of the hematocrit across the vascular tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apelblat, A., Katzir-Katchalsky, A., Silberberg, A., 1974. A mathematical analysis of capillary-tissue fluid exchange. Biorheology 11, 1–49.

    Google Scholar 

  • Bassingthwaighte, J.B., Leibovitch, L.S., West, B.J., 1994. Fractal Physiology. Oxford University Press, London.

    Google Scholar 

  • Beard, D.A., Bassingthwaighte, J.B., 2000. The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37, 282–296.

    Article  Google Scholar 

  • Beard, D.A., Bassingthwaighte, J.B., 2001. Modeling advection and diffusion of oxygen in complex vascular networks. Ann. Biomed. Eng. 29, 298–310.

    Article  Google Scholar 

  • Blake, T.R., Gross, J.F., 1982. Analysis of coupled intra- and extraluminal flows for single and multiple capillaries. Math. Biosci. 59, 173–206.

    Article  MATH  MathSciNet  Google Scholar 

  • Carr, R.T., Lacoin, M., 2000. Nonlinear dynamics of microvascular blood flow. Ann. Biomed. Eng. 28, 641–652.

    Article  Google Scholar 

  • Carr, R.T., Geddes, J.B., Wu, F., 2005. Oscillations in a simple microvascular network. Ann. Biomed. Eng. 33, 764–771.

    Article  Google Scholar 

  • Enden, G., Popel, A.S., 1994. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116, 79–88.

    Article  Google Scholar 

  • Fenton, B.M., Wilson, D.W., Cokelet, G.R., 1985. Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflügers Arch. 403, 396–400.

    Article  Google Scholar 

  • Fung, Y.C., 1973. Stochastic flow in capillary blood vessels. Microvasc. Res. 5, 34–48.

    Article  Google Scholar 

  • Furman, M.B., Olbricht, W.L., 1985. Unsteady cell distributions in capillary networks. Biotechnol. Prog. 1, 26–32.

    Article  Google Scholar 

  • Geddes, J.B., Carr, R.T., Karst, N.J., Wu, F., 2007. The onset of oscillations in microvascular blood flow. SIAM J. Appl. Dyn. Syst. 6, 694–727.

    Article  MATH  MathSciNet  Google Scholar 

  • Gazit, Y., Baish, J.W., Safabakhsh, N., Leunig, M., Baxter, L.T., Jain, R.K., 1997. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 4, 395–402.

    Article  Google Scholar 

  • Goldman, D., Popel, A.S., 2000. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206, 181–194.

    Article  Google Scholar 

  • Hsu, R., Secomb, T.W., 1989. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Math. Biosci. 96, 61–78.

    Article  MATH  Google Scholar 

  • Karshafian, R., Burns, P.N., Henkelman, M.R., 2003. Transit time kinetics in ordered and disordered vascular trees. Phys. Med. Biol. 48, 3225–3237.

    Article  Google Scholar 

  • Kassab, G.S., Fung, Y.C., 1994. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267, H319–H325.

    Google Scholar 

  • Kassab, G.S., Rider, C.A., Tang, N.J., Fung, Y.C., 1993. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265, H350–H365.

    Google Scholar 

  • Kiani, M.F., Pries, A.R., Hsu, L.L., Sarelius, I.H., Cokelet, G.R., 1994. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. 266, H1822–H1828.

    Google Scholar 

  • Klitzman, B., Johnson, P.C., 1982. Capillary network geometry and red cell distribution in the hamster cremaster muscle. Am. J. Physiol., Heart Circ. Physiol. 242(11), H211–H219.

    Google Scholar 

  • Krogh, A., 1919. The number and the distribution of capillaries in muscle with the calculation of the oxygen pressure necessary for supplying the tissue. J. Physiol. (Lond.) 52, 409–515.

    Google Scholar 

  • Less, J.R., Skalak, T.C., Sevick, E.M., Jain, R.K., 1991. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51, 265–273.

    Google Scholar 

  • Lipowsky, H.H., Zweifach, B.W., 1974. Network analysis of microcirculation of cat mesentery. Microvasc. Res. 7, 73–83.

    Article  Google Scholar 

  • Popel, A.S., 1989. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17, 257–321.

    Google Scholar 

  • Popel, A.S., Johnson, P.C., 2005. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–49.

    Article  MathSciNet  Google Scholar 

  • Pozrikidis, C., 2005. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503.

    Article  MathSciNet  Google Scholar 

  • Pozrikidis, C., 2008. Numerical Computation in Science and Engineering, 2nd edn. Oxford University Press, London.

    MATH  Google Scholar 

  • Price, R.J., Skalak, T.C., 1995. A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2, 41–51.

    Article  Google Scholar 

  • Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F., 1990. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67, 826–834.

    Google Scholar 

  • Pries, A.R., Neuhaus, D., Gaetgens, P., 1992. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263, H1770–H1778.

    Google Scholar 

  • Pries, A.R., Secomb, T.W., Gaehtgens, P., 1996. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654–667.

    Google Scholar 

  • Schmid-Schönbein, G.W., Skalak, R., Usami, S., Chien, S., 1980. Cell distribution in capillary networks. Microvascular Res. 19, 18–44.

    Article  Google Scholar 

  • Secomb, T.W., 2005. Microvascular networks: 3D structural information. Available from the Internet site: http://www.physiology.arizona.edu/people/secomb/network.html.

  • Secomb, T.W., Hsu, R., 1988. Analysis of oxygen delivery to tissue by microvascular networks. Adv. Exp. Med. Biol. 222, 95–103.

    Google Scholar 

  • Secomb, T.W., Hsu, R., 1994. Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am. J. Physiol. 267, H1214–H1221.

    Google Scholar 

  • Secomb, T.W., Skalak, R., Özkaya, N., Gross, J.F., 1986. Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405–423.

    Article  Google Scholar 

  • Secomb, T.W., Hsu, R., Dewhirst, M.W., Klitzman, B., Gross, J.F., 1993. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25, 481–489.

    Google Scholar 

  • Secomb, T.W., Hsu, R., Ong, E.T., Gross, J.F., Dewhirst, M.W., 1995. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316.

    Article  Google Scholar 

  • Secomb, T.W., Hsu, R., Beamer, N.B., Coull, B.M., 2000. Theoretical simulation of oxygen transport to brains by networks of microvessels: Effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7, 237–247.

    Article  Google Scholar 

  • Secomb, T.W., Hsu, R., Pries, A.R., 2001. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart. Circ. Physiol. 281, H629–H636.

    Google Scholar 

  • Secomb, T.W., Hsu, R., Pries, A.R., 2002. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9, 189–196.

    Article  Google Scholar 

  • Secomb, T.W., Hsu, R., Park, E.Y.H., Dewhirst, M.W., 2004. Greenâs function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32, 1519–1529.

    Article  Google Scholar 

  • Sutera, S.P., Skalak, R., 1993. The history of Poiseuilleâs law. Annu. Rev. Fluid Mech. 25, 1–19.

    Article  MathSciNet  Google Scholar 

  • Sutera, S.P., Seshadri, V., Croce, P.A., Hochmuth, R.M., 1970. Capillary blood flow. II. Deformable model cells in tube flow. Microvasc. Res. 2, 420–433.

    Article  Google Scholar 

  • Tsafnat, N., Tsafnat, G., Lambert, T.D., 2004. A three-dimensional fractal model of tumour vasculature. In: Proc. 26th Ann. Int. Conf. IEEE EMBS, pp. 683–686.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pozrikidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozrikidis, C. Numerical Simulation of Blood Flow Through Microvascular Capillary Networks. Bull. Math. Biol. 71, 1520–1541 (2009). https://doi.org/10.1007/s11538-009-9412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9412-z

Keywords

Navigation