Skip to main content
Log in

Front Instabilities and Invasiveness of Simulated Avascular Tumors

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the interface morphology of a 2D simulation of an avascular tumor composed of identical cells growing in an homogeneous healthy tissue matrix (TM), in order to understand the origin of the morphological changes often observed during real tumor growth. We use the Glazier–Graner–Hogeweg model, which treats tumor cells as extended, deformable objects, to study the effects of two parameters: a dimensionless diffusion-limitation parameter defined as the ratio of the tumor consumption rate to the substrate transport rate, and the tumor-TM surface tension. We model TM as a nondiffusing field, neglecting the TM pressure and haptotactic repulsion acting on a real growing tumor; thus, our model is appropriate for studying tumors with highly motile cells, e.g., gliomas. We show that the diffusion-limitation parameter determines whether the growing tumor develops a smooth (noninvasive) or fingered (invasive) interface, and that the sensitivity of tumor morphology to tumor-TM surface tension increases with the size of the dimensionless diffusion-limitation parameter. For large diffusion-limitation parameters, we find a transition (missed in previous work) between dendritic structures, produced when tumor-TM surface tension is high, and seaweed-like structures, produced when tumor-TM surface tension is low. This observation leads to a direct analogy between the mathematics and dynamics of tumors and those observed in nonbiological directional solidification. Our results are also consistent with the biological observation that hypoxia promotes invasive growth of tumor cells by inducing higher levels of receptors for scatter factors that weaken cell-cell adhesion and increase cell motility. These findings suggest that tumor morphology may have value in predicting the efficiency of antiangiogenic therapy in individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A.R.A., 2005. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163.

    MATH  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumourinduced angiogenesis. Bull. Math. Biol. 60, 857.

    MATH  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M., 2000. Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129.

    MATH  Google Scholar 

  • Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V., 2006. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905.

    Google Scholar 

  • Anderson, A.R.A., Rejniak, K.A., Gerlee, P., Quaranta, V., 2009. Microenvironment driven invasion: a multiscale multimodel investigation. J. Math. Biol. 58, 579.

    MathSciNet  Google Scholar 

  • Balter, A., Merks, R.M.H., Popławski, N.J., Swat, M., Glazier, J.A., 2007. The Glazier–Graner–Hogeweg model: extensions, future directions, and opportunities for further study. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (Eds.), Single-Cell-Based Models in Biology and Medicine, p. 151. Birkhäuser, Basel.

    Google Scholar 

  • Bechhoefer, J., Liebchaber, A., 1987. Testing shape selection in directional solidification. Phys. Rev. B 35, 1393.

    Google Scholar 

  • Beysens, D.A., Forgacs, G., Glazier, J.A., 2000. Embryonic tissues are viscoelastic materials. Can. J. Phys. 78, 243.

    Google Scholar 

  • Blagosklonny, M.V., 2001. Hypoxia-inducible factor: Achilles’ heel of antiangiogenic cancer therapy. Int. J. Oncol. 19, 257.

    Google Scholar 

  • Bray, D., 1992. Cell Movements. Garland, New York.

    Google Scholar 

  • Brener, E., Müller-Krumbhaar, H., Temkin, D., 1992. Kinetic phase diagram and scaling relations for stationary diffusional growth. Europhys. Lett. 17, 535.

    Google Scholar 

  • Brú, A., Pastor, J.M., Fernaud, I., Melle, S., Brú, I., 1998. Super-rough dynamics on tumour growth. Phys. Rev. Lett. 81, 4008.

    Google Scholar 

  • Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., Brú, I., 2003. The universal dynamics of tumor growth. Biophys. J. 85, 2948.

    Google Scholar 

  • Burgess, P.K., Kulesa, P.M., Murray, J.D., Alvord, E.C., 1997. Growth patterns of microscopic brain tumors. J. Neuropathol. Exp. Neurol. 56, 704.

    Google Scholar 

  • Burridge, K., Chrzanowska-Wodnicka, M., 1996. Focal adhesions, contractability, and signalling. Annu. Rev. Cell Dev. Biol. 12, 463.

    Google Scholar 

  • Byrne, H.M., Chaplain, M.A.J., Pettet, G.J., McElwain, D.L.S., 1999. A mathematical model of trophoblast invasion. J. Theor. Med. 1, 275.

    MATH  Google Scholar 

  • Calabresi, P., Schein, P.S., 1993. Medical Oncology, 2nd edn. McGraw-Hill, New York.

    Google Scholar 

  • Carter, S.B., 1965. Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208, 1183.

    Google Scholar 

  • Casciari, J.J., Sotirchos, S.V., Sutherland, R.M., 1988. Glucose diffusivity in multicellular tumor spheroids. Cancer. Res. 48, 3905.

    Google Scholar 

  • Casciari, J.J., Sotirchos, S.V., Sutherland, R.M., 1992. Variation in tumour cell growth rates and metabolism with oxygen-concentration, glucose-concentration and extracellular pH. J. Cell. Physiol. 151, 386.

    Google Scholar 

  • Chambers, A.F., Matrisian, L.M., 1997. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260.

    Google Scholar 

  • Chaplain, M.A.J., 1996. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model. 23, 47.

    MATH  Google Scholar 

  • Chaplain, M.A.J., Sleeman, B.D., 1993. Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol. 31, 431.

    MATH  MathSciNet  Google Scholar 

  • Chapman, G., Pardy, R.L., 1972. The movement of glucose and glycine through the tissues of Corymorpha palma torrey (coelenterata, hydrozoa). J. Exp. Biol. 56, 639.

    Google Scholar 

  • Chaturvedi, R., Izaguirre, J.A., Huang, C., Cickovski, T., Virtue, P., Thomas, G.L., Forgacs, G., Alber, M.S., Newman, S.A., Glazier, J.A., 2003. Multi-model simulations of chicken limb morphogenesis. Lect. Notes Comput. Sci. 2659, 39.

    Google Scholar 

  • Chaturvedi, R., Huang, C., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M., 2004. A hybrid discrete-continuum model for 3-D skeletogenesis of the vertebrate limb. Lect. Notes Comput. Sci. 3305, 543.

    Article  Google Scholar 

  • Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Glimm, T., Hentschel, H.G.E., Glazier, J.A., Newman, S.A., Alber, M.S., 2005. On multiscale approaches to three-dimensional modeling of morphogenesis. J. R. Soc. Interf. 2, 237.

    Google Scholar 

  • Christofori, G., 2006. New signals from the invasive front. Nature 441, 444.

    Google Scholar 

  • Cickovski, T.M., Huang, C., Chaturvedi, R., Glimm, T., Hentschel, H.G.E., Alber, M.S., Glazier, J.A., Newman, S.A., Izaguirre, J.A., 2005. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2, 1.

    Google Scholar 

  • Clark, E.A., Brugge, J.S., 1995. Integrins and signal transduction pathways: the road taken. Science 268, 233.

    Google Scholar 

  • Condeelis, J., Singer, R.H., Segall, J.E., 2005. The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695.

    Google Scholar 

  • Cristini, V., Lowengrub, J., Nie, Q., 2003. Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191.

    MATH  MathSciNet  Google Scholar 

  • Cristini, V., Frieboes, H.B., Gatenby, R., Caserta, S., Ferrari, M., Sinek, J., 2005. Morphologic instability and cancer invasion. Clin. Cancer Res. 11, 6772.

    Google Scholar 

  • Davis, S.H., 2001. Theory of Solidification. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Debruyne, P.R., Bruyneel, E.A. , 2002. Bile acids stimulate invasion and haptotaxis in human corectal cancer cells through activation of multiple oncogenic signalling pathways. Oncogene 21, 6740.

    Google Scholar 

  • Dockery, J., Klapper, I., 2002. Finger formation in biofilm layers. SIAM J. Appl. Math. 62, 853.

    MathSciNet  Google Scholar 

  • Dormann, S., Deutsch, A., 2002. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 0035.

    Google Scholar 

  • Drasdo, D., Höhme, S., 2003. Individual-based approaches to birth and death in avascular tumors. Math. Comput. Model. 37, 1163.

    MATH  Google Scholar 

  • Dubuc, B., Quiniou, J.F., Roques-Carmes, C., Tricot, C., Zucker, S.W., 1989. Evaluating the fractal dimension of profiles. Phys. Rev. A 39, 1500.

    MathSciNet  Google Scholar 

  • Düchting, W., 1990. Tumor growth simulation. Comput. Graph. 14, 505.

    Google Scholar 

  • Düchting, W., Ulmer, W., Ginsberg, T., 1996. Cancer: a challenge for control theory and computer modelling. Eur. J. Cancer 32A, 1283.

    Google Scholar 

  • Folkman, J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 21.

    Google Scholar 

  • Folkman, J., Hochberg, M., 1973. Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745.

    Google Scholar 

  • Forgacs, G., Foty, R.A., Shafrir, Y., Steinberg, M.S., 1998. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227.

    Google Scholar 

  • Foty, R.A., Forgacs, G., Pfleger, C.M., Steinberg, M.S., 1994. Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett. 72, 2298.

    Google Scholar 

  • Foty, R.A., Pfleger, C.M., Forgacs, G., Steinberg, M.S., 1996. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611.

    Google Scholar 

  • Freyer, J.P., Tustanoff, E., Franko, A.J., Sutherland, R.M., 1984. In situ consumption rates of cells in v-79 multicellular spheroids during growth. J. Cell. Physiol. 118, 53.

    Google Scholar 

  • Frieboes, H.B., Zheng, X., Sun, C., Tromberg, B., Gatenby, R., Cristini, V., 2006. An integrated computational/experimental model of tumor invasion. Cancer Res. 66, 1597.

    Google Scholar 

  • Frieboes, H.B., Lowengrub, J.S., Wise, S., Zheng, X., Macklin, P., Elaine, L.B.D., Cristini, V., 2007. Computer simulation of glioma growth and morphology. Neuroimage 37, S59.

    Google Scholar 

  • Friedel, P., Hegerfeldt, Y., Tusch, M., 2004. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441.

    Google Scholar 

  • Gatenby, R.A., Gawlinski, E.T., 1996. A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745.

    Google Scholar 

  • Gerlee, P., Anderson, A.R.A., 2007a. An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246, 583.

    MathSciNet  Google Scholar 

  • Gerlee, P., Anderson, A.R.A., 2007b. Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E 75, 051911.

    Google Scholar 

  • Gerlee, P., Anderson, A.R.A., 2007c. Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E 75, 051911.

    Google Scholar 

  • Gherardi, E., Gray, J., Stoker, M., Perryman, M., Furlong, R., 1989. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc. Natl. Acad. Sci. USA 86, 5844.

    Google Scholar 

  • Glazier, J.A., Graner, F., 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128.

    Google Scholar 

  • Glazier, J.A., Balter, A., Popławski, N.J., 2007. Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (Eds.), Single-Cell-Based Models in Biology and Medicine, p. 79. Birkhäuser, Basel.

    Google Scholar 

  • Glicksman, M.E., Lowengrub, J.S., Li, S.W., Li, X.R., 2007. A deterministic mechanism for dendritic solidification kinetics. JOM 59, 27.

    Google Scholar 

  • Graner, F., Glazier, J.A., 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013.

    Google Scholar 

  • Guiot, C., Delsanto, P.P., Deisboeck, T.S., 2007. Morphological instability and cancer invasion: a ‘splashing water drop’ analogy. Theor. Biol. Med. Model. 4, 4.

    Google Scholar 

  • Hartmann, D., Miura, T., 2006. Modelling in vitro lung branching morphogenesis during development. J. Theor. Biol. 242, 862.

    MathSciNet  Google Scholar 

  • Holm, E.A., Glazier, J.A., Srolovitz, D.J., Grest, G.S., 1991. Effects of lattice anisotropy and temperature on domain growth in the two-dimensional Potts model. Phys. Rev. A 43, 2662.

    Google Scholar 

  • Hotary, K., Allen, E.D., Brooks, P.C., Datta, N.S., Long, M.W., Weiss, S.J., 2003. Membrane type 1 matrix metalloproteinase usurps tumour growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33.

    Google Scholar 

  • Huang, S., Ingber, D.E., 1999. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1, E131.

    Google Scholar 

  • Huber, M.A., Kraut, N., Beug, H., 2005. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548.

    Google Scholar 

  • Hynes, R.O., 1992. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 69, 11.

    Google Scholar 

  • Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G.L., Forgacs, G., Alber, M.S., Hentschel, H.G.E., Newman, S.A., Glazier, J.A., 2004. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129.

    Google Scholar 

  • Jain, R.K., 1987. Growth patterns of microscopic brain tumors. Cancer Res. 47, 3039.

    Google Scholar 

  • Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J.P., 2005. A multiscale model for avascular tumor growth. Biophys. J. 89, 3884.

    Google Scholar 

  • Johansson, N., Ahonen, M., Kahari, V.-M., 2000. Matrix metalloproteinases in tumour invasion. Cell. Mol. Life Sci. 57, 5.

    Google Scholar 

  • Kansal, A.R., Torquato, S., Harsh, G.R., Chiocca, E.A., Deisboeck, T.S., 2000. Simulated brain tumor growth using a three-dimensional cellular automaton. J. Theor. Biol. 203, 367.

    Google Scholar 

  • Khain, E., Sander, L.M., 2006. Dynamics and pattern formation in invasive tumor growth. Phys. Rev. Lett. 96, 188103.

    Google Scholar 

  • Kimmel, M., Axelrod, D.E., 1991. Unequal cell division, growth regulation and colony size of mammalian cells: a mathematical model and analysis of experimental data. J. Theor. Biol. 153, 157.

    Google Scholar 

  • Klominek, J., Robert, K.H., Sundqvist, K.-G., 1993. Chemotaxis and haptotaxis of human malignant mesothelioma cells: effects of fibronectin, laminin, type iv collagen, and an autocrine motility factor-like substance. Cancer Res. 53, 4376.

    Google Scholar 

  • Kobayashi, R., 1993. Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410.

    MATH  Google Scholar 

  • Koochekpour, S., Pilkington, G.J., Merzak, A., 1995. Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int. J. Cancer 63, 450.

    Google Scholar 

  • Kumar, N., Zaman, M.H., Kim, H.-D., Lauffenburger, D.A., 2006. A high-throughput migration assay reveals HER2-mediated cell migration arising from increased directional persistence. Biophys. J. 91, L32.

    Google Scholar 

  • Lacovara, J., Cramer, E.B., Quigley, J.P., 1984. Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res. 44, 1657.

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M., 1986. Theory of Elasticity. Pergamon, Elmsford.

    Google Scholar 

  • Langer, J.S., 1980. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1.

    Google Scholar 

  • Langer, J.S., 1987. Lectures in the theory of pattern formation. In: Chance and Matter, p. 629. Elsevier, Amsterdam.

    Google Scholar 

  • Lawrence, J.A., Steeg, P.S., 1996. Mechanisms of tumour invasion and metastasis. World J. Urol. 14, 124.

    Google Scholar 

  • Lee, J.M., Dedhar, S., Kalluri, R., Thompson, E.W., 2006. The epithelial-mesenchymal transition: New insights in signaling, development, and disease. J. Cell Biol. 172, 973.

    Google Scholar 

  • Li, X.R., Cristini, V., Nie, Q., Lowengrub, J.S., 2007. Nonlinear three-dimensional simulation of solid tumor growth. Discrete Contin. Dyn. Syst. Ser. B 7, 581.

    MATH  MathSciNet  Google Scholar 

  • Liotta, L.A., Kohn, E.C., 2001. The microenvironment of the tumour-host interface. Nature 411, 375.

    Google Scholar 

  • Liotta, L.A., Rao, C.N., Barsky, S.H., 1983. Tumour invasion and the extracellular matrix. Lab. Invest. 49, 636.

    Google Scholar 

  • Ludwig, A., 1999. Dendritic and cellular doublets: Morphologies of thin solid films growing along a substrate during the initial state of solidification of bulk melts. Phys. Rev. E 59, 1893.

    Google Scholar 

  • Macklin, P., Lowengrub, J., 2007. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245, 677.

    MathSciNet  Google Scholar 

  • Mariani, L., Beaudry, C., McDonough, W.S., Hoelzinger, D.B., Demuth, T., Ross, K.R., Berens, T., Coons, S.W., Watts, G., Trent, J.M., Wei, J.S., Giese, A., Berens, M.E., 2001. Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J. Neuro-Oncol. 53, 161.

    Google Scholar 

  • Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S., 1994. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 27, 73.

    Google Scholar 

  • Matrisian, L.M., 1992. The matrix-degrading metalloproteinases. Bioessays 14, 455.

    Google Scholar 

  • McCarthy, J.B., Furcht, L.T., 1984. Laminin and fibronectin promote the directed migration of B16 melanoma cells in vitro. J. Cell Biol. 98, 1474.

    Google Scholar 

  • Melicow, M.M., 1982. The three-steps to cancer: a new concept of carcinogenesis. J. Theor. Biol. 94, 471.

    Google Scholar 

  • Merks, R.M.H., Glazier, J.A., 2005. A cell-centered approach to developmental biology. Physica A 352, 113.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087.

    Google Scholar 

  • Mignatti, P., Rifkin, D.B., 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161.

    Google Scholar 

  • Miura, T., Shiota, K., 2002. Depletion of FGF acts as a lateral inhibitory factor in lung branching morphogenesis in vitro. Mech. Dev. 116, 29.

    Google Scholar 

  • Mombach, J.C., Glazier, J.A., Raphael, R.C., Zajac, M., 1995. Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett. 75, 2244.

    Google Scholar 

  • Moore, M.G., Juel, A., Burgess, J.M., McCormick, W.D., Swinney, H.L., 2002. Fluctuations in viscous fingering. Phys. Rev. E 65, 030601(R).

    MathSciNet  Google Scholar 

  • Müller-Krumbhaar, H., Kurz, W., Brener, E., 1991. Solidification aa. In: Phase Tranformations in Materials. VCH, Weinheim.

    Google Scholar 

  • Nakamura, T., Teramoto, H., Ichihara, A., 1986. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc. Natl. Acad. Sci. USA 83, 6489.

    Google Scholar 

  • Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., Shimizu, S., 1989. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440.

    Google Scholar 

  • Orme, M.E., Chaplain, M.A.J., 1996. A mathematical model of vascular tumour growth and invasion. Math. Comput. Model. 23, 43.

    MATH  Google Scholar 

  • Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., Comoglio, P.M., 2003. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347.

    Google Scholar 

  • Perumpanani, A.J., Sherratt, J.A., Norbury, J., Byrne, H.M., 1996. Biological inferences from a mathematical model of malignant invasion. Invasion Metastasis 16, 209.

    Google Scholar 

  • Picioreanu, C., van Loosdrecht, M.C.M., Heijnen, J.J., 1998a. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58, 101.

    Google Scholar 

  • Picioreanu, C., van Loosdrecht, M.C.M., Heijnen, J.J., 1998b. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol. Bioeng. 57, 718.

    Google Scholar 

  • Pocheau, A., Georgelin, M., 2006. Shape of growth cells in directional solidification. Phys. Rev. E 73, 011604.

    Google Scholar 

  • Popławski, N.J., Swat, M., Gens, J.S., Glazier, J.A., 2007. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A 373, 521.

    Google Scholar 

  • Popławski, N.J., Shirinifard, A., Swat, M., Glazier, J.A., 2008. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng. 5, 355.

    MATH  MathSciNet  Google Scholar 

  • Qi, A., Zheng, X., Du, C., An, B., 1993. A cellular automaton model of cancerous growth. J. Theor. Biol. 161, 1.

    Google Scholar 

  • Quigley, J.P., Lacovara, J., Cramer, E.B., 1983. The directed migration of B-16 melanoma-cells in response to a haptotactic chemotactic gradient of fibronectin. J. Cell Biol. 97, A450.

    Google Scholar 

  • Radotra, B., McCormick, D., Cockard, A., 1994. CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components. Neuropathol. Appl. Neurobiol. 20, 399.

    Google Scholar 

  • Rejniak, K.A., 2005. A single-cell approach in modeling the dynamics of tumor microregions. Math. Biosci. Eng. 2, 643.

    MATH  MathSciNet  Google Scholar 

  • Retsky, M.W., Swartzendruber, D.E., Wardwell, R.H., Bame, P.D., 1990. Is gompertzian or exponential kinetics a valid description of individual human cancer growth? Med. Hypotheses 33, 95.

    Google Scholar 

  • Rubin, J.S., Bottaro, D.P., Aaronson, S.A., 1993. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta 1155, 357.

    Google Scholar 

  • Sahlgren, C., Gustafsson, M.V., Jin, S., Poellinger, L., Lendahl, U., 2008. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl. Acad. Sci. USA 105, 6392.

    Google Scholar 

  • Saito, Y., Misbah, C., Müller-Krumbhaar, H., 1989. Directional solidification: Transition from cells to dendrites. Phys. Rev. Lett. 63, 2377.

    Google Scholar 

  • Sander, L.M., Deisboeck, T.S., 2002. Growth patterns of microscopic brain tumors. Phys. Rev. E 66, 051901.

    Google Scholar 

  • Sherratt, J.A., Nowak, M.A., 1992. Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc. R. Soc. Lond. B 248, 261.

    Google Scholar 

  • Sherwood, L., 2001. Human Physiology: From Cells to Systems, 4th edn. Brooks/Cole, Belmont.

    Google Scholar 

  • Smolle, J., Stettner, H., 1993. Computer simulation of tumour cell invasion by a stochastic growth model. J. Theor. Biol. 160, 63.

    Google Scholar 

  • Stalder, I., Bilgram, J.H., 2001. Morphology of structures in diffusional growth in three dimensions. Europhys. Lett. 56, 829.

    Google Scholar 

  • Steinberg, M.S., 1963. Reconstruction of tissues by dissociated cells. Some morphogenetic movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401.

    Google Scholar 

  • Stetler-Stevenson, W.G., Aznavoorian, S., Liotta, L.A., 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541.

    Google Scholar 

  • Stetler-Stevenson, W.G., Hewitt, R., Corcoran, M., 1996. Matrix metallo-proteinases and tumour invasion: from correlation to causality to the clinic. Cancer Biol. 7, 147.

    Google Scholar 

  • Stoker, N., Gherardi, E., Perryman, M., Grey, J., 1987. Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327, 239.

    Google Scholar 

  • Stott, E.L., Britton, N.F., Glazier, J.A., Zajac, M., 1999. Stochastic simulation of benign avascular tumor growth using the Potts model. Math. Comput. Mod. 30, 183.

    Google Scholar 

  • Swanson, K.R., Bridge, C., Murray, J.D., Jr, E.C.A., 2003. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1.

    Google Scholar 

  • Terranova, V.P., Diflorio, R., Lyall, R.M., Hic, S., Friesel, R., Maciag, T., 1985. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol. 101, 2330.

    Google Scholar 

  • Thorgeirsson, U.P., Lindsay, C.K., Cottam, D.W., Gomez, D.E., 1994. Tumor invasion, proteolysis, and angiogenesis. J. Neurooncol. 18, 89.

    Google Scholar 

  • Tracqui, P., 1995. From passive diffusion to active cellular migration in mathematical models of tumour invasion. Acta Biotheor. 43, 443.

    Google Scholar 

  • Trédan, O., Galmarini, C.M., Patel, K., Tannock, I.F., 2007. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99, 1441.

    Google Scholar 

  • Trusolino, L., Comoglio, P.M., 2002. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Rev. Cancer 4, 289.

    Google Scholar 

  • Turner, S., Sherratt, J.A., 2002. Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85.

    MathSciNet  Google Scholar 

  • Turner, S., Sherratt, J.A., Painter, K.J., Savill, N.J., 2004a. From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69, 021910.

    MathSciNet  Google Scholar 

  • Turner, S., Sherratt, J.A., Cameron, D., 2004b. Tamoxifen treatment failure in cancer and the nonlinear dynamics of TGFβ. J. Theor. Biol. 229, 101.

    MathSciNet  Google Scholar 

  • Ward, J.P., King, J.R., 1999. Mathematical modelling of avascular-tumour growth II: modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171.

    MATH  Google Scholar 

  • Weinberg, R.A., 2006. The Biology of Cancer. Garland, New York.

    Google Scholar 

  • Wheldon, T.E., 1986. Mathematical models in experimental and clinical oncology. In: Ingram, D., Bloch, R.F. (Eds.), Mathematical Methods in Medicine, p. 1. Wiley, New York.

    Google Scholar 

  • Witten, T.A., Sander, L.M., 1983. Diffusion-limited aggregation. Phys. Rev. B 27, 5686.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikodem J. Popławski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popławski, N.J., Agero, U., Gens, J.S. et al. Front Instabilities and Invasiveness of Simulated Avascular Tumors. Bull. Math. Biol. 71, 1189–1227 (2009). https://doi.org/10.1007/s11538-009-9399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9399-5

Keywords

Navigation