Skip to main content
Log in

A Stochastic Model of Gene Evolution with Time Dependent Pseudochaotic Mutations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop here a new class of stochastic models of gene evolution in which a random subset of the 64 possible trinucleotides mutates at each evolutionary time t according to some time dependent substitution probabilities. Therefore, at each time t, the numbers and the types of mutable trinucleotides are unknown. Thus, the mutation matrix changes at each time t. This pseudochaotic model developed generalizes the standard model in which all the trinucleotides mutate at each time t. It determines the occurrence probabilities at time t of trinucleotides which pseudochaotically mutate according to 3 time dependent substitution parameters associated with the 3 trinucleotide sites. The main result proves that under suitable assumptions, this pseudochaotic model converges to a uniform probability vector identical to that of the standard model. Furthermore, an application of this pseudochaotic model allows an evolutionary study of the 3 circular codes identified in both eukaryotic and prokaryotic genes. A circular code is a particular set of trinucleotides whose main property is the retrieval of the frames in genes locally, i.e., anywhere in genes and particularly without start codons, and automatically with a window of a few nucleotides. After a certain evolutionary time and with particular time dependent functions for the 3 substitution parameters, precisely an exponential decrease in the 1st and 2nd trinucleotide sites and an exponential increase in the 3rd one, this pseudochaotic model retrieves the main statistical properties of the 3 circular codes observed in genes. Furthermore, it leads to a circular code asymmetry stronger than the standard model (nonpseudochaotic) and, therefore, to a better correlation with the genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, P.F., Burge, C.B., Hwa, T., 2002. DNA sequence evolution with neighbor-dependent mutation. In: RECOMB’02, Proceedings of the 6th Annual International Conference on Computational Biology, pp. 32–8.

  • Arquès, D.G., Michel, C.J., 1993. Analytical expression of the purine/pyrimidine codon probability after and before random mutations. Bull. Math. Biol. 55, 1025–038.

    MATH  Google Scholar 

  • Arquès, D.G., Michel, C.J., 1995. Analytical solutions of the dinucleotide probability after and before random mutations. J. Theor. Biol. 175, 533–44.

    Article  Google Scholar 

  • Arquès, D.G., Michel, C.J., 1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45–8.

    Article  Google Scholar 

  • Arquès, D.G., Fallot, J.-P., Michel, C.J., 1998. An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5’ and 3’ regions. Bull. Math. Biol. 60, 163–94.

    Article  MATH  Google Scholar 

  • Bahi, J.M., Michel, C.J., 2004. A stochastic gene evolution model with time dependent mutations. Bull. Math. Biol. 66, 763–78.

    Article  MathSciNet  Google Scholar 

  • Berstel, J., Perrin, D., 1985. Theory of Codes, Academic, New York.

    MATH  Google Scholar 

  • Chazan, D., Miranker, W., 1969. Chaotic relaxation. Linear Algebra Appl. 2, 199–22.

    Article  MATH  MathSciNet  Google Scholar 

  • Ermolaeva, M.D., 2001. Synonymous codon usage in bacteria. Curr. Issues Mol. Biol. 3, 91–7.

    Google Scholar 

  • Frey, G., Michel, C.J., 2006. An analytical model of gene evolution with 6 mutation parameters: an application to archaeal circular codes. J. Comput. Biol. Chem. 30, 1–1.

    Article  MATH  Google Scholar 

  • Fryxell, K.J., Zuckerkandl, E., 2000. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17, 1371–383.

    Google Scholar 

  • Galtier, N., 2001. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. 18, 866–73.

    Google Scholar 

  • Goldman, N., Yang, Z., 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–36.

    Google Scholar 

  • Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules. In: Munro, H.N. (Ed.), Mammalian Protein Metabolism, pp. 21–32. Academic, New York.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–20.

    Article  Google Scholar 

  • Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 78, 454–58.

    Article  MATH  Google Scholar 

  • Lassez, J.-L., 1976. Circular codes and synchronization. Int. J. Comput. Syst. Sci. 5, 201–08.

    MATH  MathSciNet  Google Scholar 

  • Michel, C.J., 2007. An analytical model of gene evolution with 9 mutation parameters: an application to the amino acids coded by the common circular code. Bull. Math. Biol. 69, 677–98.

    Article  MATH  Google Scholar 

  • Michel, C.J., 2008. A 2006 review of circular codes in genes. Comput. Math. Appl. 55, 984–88.

    Article  MATH  MathSciNet  Google Scholar 

  • Robert, F., 1986. Discrete Iterations: A Metric Study. Series in Computational Mathematics, vol. 6. Springer, Berlin.

    MATH  Google Scholar 

  • Takahata, N., Kimura, M., 1981. A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics 98, 641–57.

    MathSciNet  Google Scholar 

  • Tuffley, C., Steel, M., 1998. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–1.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfowitz, J., 1963. Products of indecomposable, aperiodic, stochastic matrices. Proc. Am. Math. Soc. 14, 733–37.

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, Z., 1994. Maximum-likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–14.

    Article  Google Scholar 

  • Yang, Z., Swanson, W.J., 2002. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol. Biol. Evol. 19, 49–7.

    Google Scholar 

  • Yang, Z., Nielsen, R., Goldman, N., Krabbe Pedersen, A.-M., 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahi, J.M., Michel, C.J. A Stochastic Model of Gene Evolution with Time Dependent Pseudochaotic Mutations. Bull. Math. Biol. 71, 681–700 (2009). https://doi.org/10.1007/s11538-008-9376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9376-4

Keywords

Navigation