Skip to main content

Advertisement

Log in

Within-Host Virus Models with Periodic Antiviral Therapy

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper investigates the effect of drug treatment on the standard within-host virus model, assuming that therapy occurs periodically. It is shown that eradication is possible under these periodic regimens, and we quantitatively characterize successful drugs or drug combinations, both theoretically and numerically. We also consider certain optimization problems, motivated for instance, by the fact that eradication should be achieved at acceptable toxicity levels to the patient. It turns out that these optimization problems can be simplified considerably, and this makes calculations of the optima a fairly straightforward task. All our results will be illustrated on an HIV model by means of numerical examples based on up-to-date knowledge of parameter values in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajaria, S.H., Webb, G., Kirschner, D.E., 2004. Predicting differential responses to structured treatment interruptions during HAART. Bull. Math. Biol. 66, 1093–1118.

    Article  Google Scholar 

  • Ball, C.L., Gilchrist, M.A., Coombs, D., 2007. Modeling within-host evolution of HIV: mutation, competition and strain replacement. Bull. Math. Biol. 69, 2361–2385.

    Article  MATH  MathSciNet  Google Scholar 

  • Berman, A., Plemmons, R., 1994. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Bonhoeffer, S., Nowak, M.A., 1997. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc. R. Soc. Lond. B 264, 631–637.

    Article  Google Scholar 

  • De Leenheer, P., Pilyugin, S.S., 2008 Multi-strain virus dynamics with mutations: a global analysis. Math. Med. Biol., to appear. (Preliminary version in arXiv:0707.4501/).

  • De Leenheer, P., Smith, H.L., 2003. Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313–1327.

    Article  MATH  MathSciNet  Google Scholar 

  • Dixit, N.M., Perelson, A.S., 2004. Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109.

    Article  MathSciNet  Google Scholar 

  • d’Onofrio, A., 2005. Periodically varying antiviral therapies: conditions for global stability of the virus free state. Appl. Math. Comput. 168, 945–953.

    Article  MATH  MathSciNet  Google Scholar 

  • Earn, D.J.D., Dushoff, J., Levin, S.A., 2002. Ecology and evolution of the flu. Trends Ecol. Evol. 117, 334–340.

    Article  Google Scholar 

  • Ganem, D., Prince, A.M., 2004. Hepatitis B virus infection—natural history and clinical consequences. New Engl. J. Med. 350, 1118–1129.

    Article  Google Scholar 

  • Kirschner, D., Lenhart, S., Serbin, S., 1997. Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792.

    Article  MATH  MathSciNet  Google Scholar 

  • Krakovska, O., Wahl, L.M., 2007. Drug-sparing regimens for HIV combination therapy: benefits predicted for “drug coasting”. Bull. Math. Biol. 69, 2627–2647.

    Article  MATH  Google Scholar 

  • Larder, B., Darby, G., Richman, D.D., 1989. HIV with reduced sensitivity to zidovudine isolated during prolonged therapy. Science 243, 1731–1734.

    Article  Google Scholar 

  • Locarnini, S., Lai, C.-L., 2003. Hepatitis B Virus Guide. International Medical Press, London.

    Google Scholar 

  • Molineaux, L., Dietz, K., 2000. Review of intra-host models of malaria. Parassitologia 41, 221–231.

    Google Scholar 

  • Nowak, M.A., May, R.M., 2000. Virus Dynamics. Oxford University Press, New York.

    MATH  Google Scholar 

  • Ortiz, G.M., et al., 2001. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc. Natl. Acad. Sci. 98, 13288–13293.

    Article  Google Scholar 

  • Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Ribiero, R.M., Bonhoeffer, S., 2000. Production of resistant HIV mutants during antiretroviral therapy. Proc. Natl. Acad. Sci. 97, 7681–7686.

    Article  Google Scholar 

  • Richman, D.D., et al., 1994. J Nevirapine resistance mutations of HIV-1 selected during therapy. J. Virol. 68, 1660–1666.

    Google Scholar 

  • Richman, D.D. (Ed.), 2004. Human Immunodeficiency Virus. International Medical Press, London.

    Google Scholar 

  • Rong, L., Feng, Z., Perelson, A.S., 2007. Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull. Math. Biol. 69, 2027–2060.

    Article  MATH  MathSciNet  Google Scholar 

  • Siliciano, J.D., et al., 2003. Long term follow-up studies confirm the extraordinary stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728.

    Article  Google Scholar 

  • Special issue on virology and clinical advances of HCV infection, 2006. Int. J. Med. Sci. 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick De Leenheer.

Additional information

Supported in part by NSF grant DMS-0614651.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leenheer, P. Within-Host Virus Models with Periodic Antiviral Therapy. Bull. Math. Biol. 71, 189–210 (2009). https://doi.org/10.1007/s11538-008-9359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9359-5

Keywords

Navigation