Skip to main content

Advertisement

Log in

A Geometric Comparison of Single Chain Multi-State Models of Ion Channel Gating

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multi-state models of ion channel gating have been used extensively, but choosing optimally small yet sufficiently complex models to describe particular experimental data remains a difficult task. In order to provide some insight into appropriate model selection, this paper presents some basic results about the behavior of solutions of multi-state models, particularly those arranged in a chain formation. Some properties of the eigenvalues and eigenvectors of constant-rate multi-state models are presented. A geometric description of a three-state chain is given and, in particular, differences between a chain equivalent to an Hodgkin–Huxley model and a chain with identical rates are analyzed. One distinguishing feature between these two types of systems is that decay from the open state in the Hodgkin–Huxley model is dominated by the most negative eigenvalue while the identical rate chain displays a mix of modes over all eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bähring, R., Boland, L.M., Varghese, A., Gebauer, M., Pongs, O., 2001. Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels. J. Physiol. 535, 65–1.

    Article  Google Scholar 

  • Ball, F.G., Rice, J.A., 1992. Stochastic models for ion channels: Introduction and bibliography. Math. Biosci. 112, 189–06.

    Article  MATH  Google Scholar 

  • Bezanilla, F., 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–92.

    Google Scholar 

  • Chanda, B., Bezanilla, F., 2002. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–45.

    Article  Google Scholar 

  • Destexhe, A., Huguenard, J.R., 2000. Nonlinear thermodynamic models of voltage-dependent currents. J. Comput. Neurosci. 9, 259–70.

    Article  Google Scholar 

  • Destexhe, A., Mainen, Z.F., Sejnowski, T.J., 1994. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195–30.

    Article  Google Scholar 

  • Eyring, H., Lumry, R., Woodbury, J.W., 1949. Some applications of modern rate theory to physiological systems. Record Chem. Prog. 10, 100–14.

    Google Scholar 

  • Fitzhugh, R., 1965. A kinetic model of the conductance changes in nerve membrane. J. Cell. Comput. Physiol. 66, 111–15.

    Article  Google Scholar 

  • Fredkin, D.R., Montal, M., Rice, J.A., 1985. Identification of aggregated Markovian models: Application to the nicotinic acetylcholine receptor. In: Cam, L.M.L., Olshen, R.A. (Eds.), Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. 1, pp. 269–289. Institute of Mathematical Statistics, Wadsworth Advanced Books & Software, Monterey.

  • Hill, T.L., Chen, Y.D., 1972. On the theory of ion transport across nerve membranes. VI. free energy and activation free energies of conformational change. Proc. Natl. Acad. Sci. USA 69, 1723–726.

    Article  Google Scholar 

  • Hille, B., 1992. Ionic Channels of Excitable Membranes. Sinauer, Sunderland.

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–44.

    Google Scholar 

  • Kargol, A., Smith, B., Millonas, M.M., 2002. Applications of nonequilibrium response spectroscopy to the study of channel gating. Experimental design and optimization. J. Theor. Biol. 218, 239–58.

    Article  Google Scholar 

  • Kienker, P., 1989. Equivalence of aggregated Markov models of ion-channel gating. Proc. R. Soc. Lond. B 236, 269–09.

    Article  Google Scholar 

  • Kijima, H., Kijima, S., 1997. Theoretical approaches to ion channel dynamics and the first-order reaction. Prog. Cell Res. 6, 295–04.

    Google Scholar 

  • Levitt, D.G., 1989. Continuum model of voltage-dependent gating. Biophys. J. 55, 489–98.

    Article  Google Scholar 

  • Liebovitch, L.S., Todorov, A.T., 1996. Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit. Rev. Neurobiol. 10, 169–87.

    Google Scholar 

  • Liebovitch, L.S., Fischbarg, J., Koniarek, J.P., 1987. Ion channel kinetics: A model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84, 37–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Liebovitch, L.S., Scheurle, D., Rusek, M., Zochowski, M., 2001. Fractal methods to analyze ion channel kinetics. Methods 24, 359–75.

    Article  Google Scholar 

  • Mirsky, L., 1963. An Introduction to Linear Algebra. Oxford Univ. Press/Clarendon Press, London.

    Google Scholar 

  • Piper, D.R., Varghese, A., Sanguinetti, M.C., Tristani-Firouzi, M., 2003. Gating currents associated with intramembrane charge displacement in HERG potassium channels. PNAS 100, 10534–0539.

    Article  Google Scholar 

  • Roux, M.J., Olcese, R., Toro, L., Bezanilla, F., Stefani, E., 1998. Fast inactivation in Shaker K+ channels. J. Gen. Physiol. 111, 625–38.

    Article  Google Scholar 

  • Tsien, R.W., Noble, D., 1969. A transition state theory approach to the kinetics of conductances in excitable membranes. J. Membr. Biol. 1, 248–73.

    Article  Google Scholar 

  • Yueh, W.-C., 2005. Eigenvalues of several tridiagonal matrices. Appl. Math. E-Notes 5, 66–4.

    MATH  Google Scholar 

  • Zagotta, W.N., Hoshi, T., Dittman, J., Aldrich, R.W., 1994a. Shaker potassium channel gating II: Transitions in the activation pathway. J. Gen. Physiol. 103, 279–19.

    Article  Google Scholar 

  • Zagotta, W.N., Hoshi, T., Dittman, J., Aldrich, R.W., 1994b. Shaker potassium channel gating III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103, 321–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan R. Willms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willms, A.R., Nelson, D. A Geometric Comparison of Single Chain Multi-State Models of Ion Channel Gating. Bull. Math. Biol. 70, 1503–1524 (2008). https://doi.org/10.1007/s11538-008-9310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9310-9

Keywords

Navigation