Skip to main content
Log in

An Integrative Computational Model of Multiciliary Beating

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The coordinated beating of motile cilia is responsible for ovum transport in the oviduct, transport of mucus in the respiratory tract, and is the basis of motility in many single-celled organisms. The beating of a single motile cilium is achieved by the ATP-driven activation cycles of thousands of dynein molecular motors that cause neighboring microtubule doublets within the ciliary axoneme to slide relative to each other. The precise nature of the spatial and temporal coordination of these individual motors is still not completely understood. The emergent geometry and dynamics of ciliary beating is a consequence of the coupling of these internal force-generating motors, the passive elastic properties of the axonemal structure, and the external viscous, incompressible fluid. Here, we extend our integrative model of a single cilium that couples internal force generation with the surrounding fluid to the investigation of multiciliary interaction. This computational model allows us to predict the geometry of beating, along with the detailed description of the time-dependent flow field both near and away from the cilia. We show that synchrony and metachrony can, indeed, arise from hydrodynamic coupling. We also investigate the effects of viscosity and neighboring cilia on ciliary beat frequency. Moreover, since we have precise flow information, we also measure the dependence of the total flow pumped per cilium per beat upon parameters such as viscosity and ciliary spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius, B.A., 1976. A human syndrome caused by immotile cilia. Science 193(4250), 317–319.

    Article  Google Scholar 

  • Afzelius, B.A., 2004. Cilia-related diseases. J. Pathol. 204, 470–477.

    Article  Google Scholar 

  • Avidor-Reiss, T., Maer, A.M., Koundakjian, E., Polyanovsky, A., Keil, T., Subramaniam, S., Zuker, C.S., 2004. Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539.

    Article  Google Scholar 

  • Brokaw, C., 2001. Simulating the effects of fluid viscosity on the behaviour of sperm flagella. Math. Methods Appl. Sci. 24, 1351.

    Article  MATH  Google Scholar 

  • Brokaw, C., Luck, D., 1983. Bending patterns of chlamydomonas flagella i. Wild-type bending patterns. Cell Motil. 3, 131–150.

    Article  Google Scholar 

  • Brokaw, C.J., 1972. Flagellar movement: A sliding filament model. Science 178, 455–462.

    Article  Google Scholar 

  • Camalet, S., Jülicher, F., 2000. Generic aspects of axonemal beating. New J. Phys. 2, 24.1–24.23.

    Article  Google Scholar 

  • Childress, S., 1981. Mechanics of Swimming and Flying. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Chilvers, M., O’Callaghan, C., 2000. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax 55, 314–317.

    Article  Google Scholar 

  • Darnton, N., Turner, L., Breuer, K., Berg, H., 2004. Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870.

    Google Scholar 

  • Davenport, J.R., Yoder, B.K., 2005. An incredible decade for the primary cilium: A look at a once-forgotten organelle. Am. J. Physiol. Renal. Physiol. 289, F1159–F1169.

    Article  Google Scholar 

  • Dillon, R.H., Fauci, L.J., 2000. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430.

    Article  Google Scholar 

  • Dillon, R.H., Fauci, L.J., Omoto, C., 2003. Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10(5), 745–757. Progress in Partial Differential Equations (Pullman, WA, 2002).

    MATH  MathSciNet  Google Scholar 

  • Dresdner, R., Katz, D., Berger, S., 1980. The propulsion by large amplitude waves of uniflagellar micro-organisms of finite length. J. Fluid Mech. 97, 591.

    Article  MATH  Google Scholar 

  • Eley, L., Yates, L.M., Goodship, J.A., 2005. Cilia and disease. Cur. Opin. Genet. Devel. 15, 308–314.

    Article  Google Scholar 

  • Fauci, L., McDonald, A., 1994. Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679.

    Google Scholar 

  • Fauci, L.J., Dillon, R.H., 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394.

    Article  MathSciNet  Google Scholar 

  • Fliegauf, M., Omran, H., 2006. Novel tools to unravel molecular mechanisms in cilia-related disorders. Trends Genet. 22(5), 241–245.

    Article  Google Scholar 

  • Flores, H., Lobaton, E., Mendez-Diez, S., Tlupova, S., Cortez, R., 2005. A study of bacterial flagellar bundling. Bull. Math. Biol. 67, 137–168.

    Article  MathSciNet  Google Scholar 

  • Gheber, L., Korngreen, A., Priel, Z., 1998. Effect of viscosity on metachrony in mucus propelling cilia. Cell Motil. Cytoskel. 39(1), 9–20.

    Article  Google Scholar 

  • Gheber, L., Priel, Z., 1989. Synchronization between beating cilia. Biophys. J. 55, 183–191.

    Google Scholar 

  • Gray, J., 1928. Ciliary Movement. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gray, J., Hancock, G., 1955. The propulsion of sea-urchin spermatoza. J. Exp. Biol. 32, 802–814.

    Google Scholar 

  • Gueron, S., Levit-Gurevich, K., 1998. Computation of the internal forces in cilia: Application to ciliary motion, the effects of viscosity, and cilia interactions. Biophys. J. 74(4), 1658–1676.

    Google Scholar 

  • Gueron, S., Levit-Gurevich, K., 1999. Energetic considerations of ciliary beating and the advantage of metachronal coordination. Proc. Natl. Acad. Sci. USA 96(22), 12240–12245.

    Article  MATH  Google Scholar 

  • Gueron, S., Levit-Gurevich, K., 2001. A three-dimensional model for ciliary motion based on the internal 9+2 structure. Proc. Biol. Sci. 268(1467), 599–607.

    Article  Google Scholar 

  • Gueron, S., Levit-Gurevich, K., Liron, N., Blum, J.J., 1997. Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc. Natl. Acad. Sci. USA 94(12), 6001–6006.

    Article  MATH  Google Scholar 

  • Guirao, B., Joanny, J.-F., 2007. Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys. J. 92, 1900–1917.

    Article  Google Scholar 

  • Higdon, J., 1979a. A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90, 685.

    Article  MATH  MathSciNet  Google Scholar 

  • Higdon, J., 1979b. The hydrodynamics analysis of flagellar propulsion: Helical waves. J. Fluid Mech. 94, 331.

    Article  MATH  MathSciNet  Google Scholar 

  • Hines, M., Blum, J., 1978. Bend propagation in flagella i. Derivation of equations of motion and their simulation. Biophys. J. 23, 41.

    Google Scholar 

  • Hines, M., Blum, J., 1979. Bend propagation in flagella ii. Incorporating of dynein cross-bridge kinetics into the equations of motion. Biophys. J. 25, 421.

    Google Scholar 

  • Ho, H., Suarez, S., 2001. Hyperactivation of mammalian spermatozoa: Function and regulation. Reproduction 122, 519.

    Article  Google Scholar 

  • Howard, J., 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Assoc., Sunderland.

    Google Scholar 

  • Ishijima, S., Hiramoto, Y., 1994. Flexural rigidity of echinoderm sperm flagella. Cell Struct. Funct. 19(6), 349–362.

    Article  Google Scholar 

  • Kim, M., Bird, J., Van Parys, J., Breuer, K., Powers, T., 2003. A macroscopic scale model of bacterial flagellar bundling. Proc. Natl. Acad. Sci. USA 100(26), 15481–15485.

    Article  Google Scholar 

  • Lighthill, J.L., 1967. Flagellar hydrodynamics. SIAM Rev. 18, 161–230.

    Article  MathSciNet  Google Scholar 

  • Lim, S., Peskin, C., 2004. Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25(6), 2066–2083.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindemann, C., 2003. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the foces acting within a flagellum. Biophys. J. 84, 4115–4126.

    Google Scholar 

  • Lindemann, C., 2007. The geometric clutch as a working hypothesis for future research on cilia and flagella. Ann. N.Y. Acad. Sci. 1101, 477–493.

    Article  Google Scholar 

  • Machemer, H., 1972. Ciliary activity and the origin of metachrony in paramecium: Effects of increased viscosity. J. Exp. Biol. 57(1), 239–259.

    Google Scholar 

  • Marshall, W.F., Nonaka, S., 2006. Cilia: Tuning in to the cell’s antenna. Curr. Biol. 16(15), R604–R614.

    Article  Google Scholar 

  • Mitchell, B., Jacobs, R., Li, J., Chien, S., Kintner, C., 2007. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97–101.

    Article  Google Scholar 

  • Murase, M., 1992. The Dynamics of Cellular Motility. Wiley, Chichester.

    Google Scholar 

  • Pan, J., Wang, Q., Snell, W.J., 2005. Cilium-generated signaling and cilia-related disorders. Lab. Invest. 85, 452–463.

    Article  Google Scholar 

  • Peskin, C.S., 1977. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 479–517.

    Article  MATH  MathSciNet  Google Scholar 

  • Phan-Thien, N., Tran-Cong, T., Ramia, M., 1987. A boundary element analysis of flagellar propulsion. J. Fluid Mech. 184, 533.

    Article  Google Scholar 

  • Powers, T., 2001. Role of body rotation in bacterial flagellar bundling. Phys. Rev. E 65, 040903.

    Article  Google Scholar 

  • Snell, W.J., Pan, J., Wang, Q., 2004. Cilia and flagella revealed: From flagellar assembly in chlamydomonas to human obesity disorders. Cell 117, 693–697.

    Article  Google Scholar 

  • Solari, C.A., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E., 2006. Multicellularity and the functional interdependence of motility and molecular transport. Proc. Natl. Acad. Sci. USA 103, 1353–1358.

    Article  Google Scholar 

  • Talbot, P., Geiske, C., Knoll, M., 1999. Oocyte pickup by the mammalian oviduct. Mol. Biol. Cell 10(1), 5–8.

    Google Scholar 

  • Tani, T., Kamimura, S., 1998. Reactivation of sea-urchin sperm flagella induced by rapid photolysis of caged atp. J. Exp. Biol. 201, 1493–1503.

    Google Scholar 

  • Taylor, G., 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. 209, 447.

    Article  MATH  Google Scholar 

  • Vilfan, A., Jülicher, F., 2006. Hydrodynamic flow patterns and synchronization of beating cilia. Phys. Rev. Lett. 96, 058102.

    Article  Google Scholar 

  • Vogel, G., 2005. Betting on cilia. Science 310(5746), 216–218.

    Article  Google Scholar 

  • Wiggins, C.H., Goldstein, R.E., 1998. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 3879–3882.

    Article  Google Scholar 

  • Wiggins, C.H., Riveline, D., Ott, A., Goldstein, R.E., 1998. Trapping and wiggling: Elastohydrodynamics of driven microfilaments. Biophys. J. 74(2), 1043–1060.

    Article  Google Scholar 

  • Witman, G., 1990. Introduction to cilia and flagella. In: R. Bloodgood (Ed.), Ciliary and Flagellar Membranes, p. 1. Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhou Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Dillon, R.H. & Fauci, L.J. An Integrative Computational Model of Multiciliary Beating. Bull. Math. Biol. 70, 1192–1215 (2008). https://doi.org/10.1007/s11538-008-9296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9296-3

Keywords

Navigation