Skip to main content
Log in

New Analytic Results for Speciation Times in Neutral Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the “critical branching process.” We develop an analytic way—as opposed to the common simulation approach—for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained.

Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous, D.J., 2001. Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16(1), 23–34. ISSN 0883-4237.

    Article  MATH  MathSciNet  Google Scholar 

  • Aldous, D., Popovic, L., 2005. A critical branching process model for biodiversity. Adv. Appl. Probab. 37(4), 1094–1115. ISSN 0001-8678.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J.O., 1980. Statistical Decision Theory: Foundations, Concepts, and Methods. Springer Series in Statistics. Springer, New York. ISBN 0-387-90471-9.

    MATH  Google Scholar 

  • Bininda-Emonds, O.R., Cardillo, M., Jones, K.E., MacPhee, R.D., Beck, R.M., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A., 2007. The delayed rise of present-day mammals. Nature 446(7135), 507–512.

    Article  Google Scholar 

  • Dehling, H., Haupt, B., 2003. Einfuehrung in die Wahrscheinlichkeitstheorie und Statistik. Springer, Berlin.

    MATH  Google Scholar 

  • Edwards, A.W.F., 1970. Estimation of the branch points of a branching diffusion process. (With discussion). J. Roy. Stat. Soc. Ser. B 32, 155–174. ISSN 0035-9246.

    MATH  Google Scholar 

  • Forster, O., 1981. Analysis 3. Vieweg, Wiesbaden.

    MATH  Google Scholar 

  • Gernhard, T., 2006. Stochastic models of speciation events in phylogenetic trees. Diplom thesis, Technical University of Munich.

  • Gernhard, T., Ford, D., Vos, R., Steel, M., 2006. Estimating the relative order of speciation or coalescence events on a given phylogeny. Evol. Bioinformatics Online 2, 309–317.

    Google Scholar 

  • Kingman, J.F.C., 1982a. On the genealogy of large populations. J. Appl. Probab. 19A, 27–43.

    Article  MathSciNet  Google Scholar 

  • Kingman, J.F.C., 1982b. The coalescent. Stoch. Process. Their Appl. 13, 235–248.

    Article  MATH  MathSciNet  Google Scholar 

  • Kingman, J.F.C., 1982c. Exchangeability and the evolution of large populations. Exch. Probab. Stat. 97–112.

  • Lebedew, N.N., 1973. Spezielle Funktionen und ihre Anwendung. B.I.-Wissenschaftsverlag.

  • Ma, N.-Y., Liu, F., 2004. A novel analytical scheme to compute the n-fold convolution of exponential-sum distribution functions. Appl. Math. Comput. 158(1), 225–235. ISSN 0096-3003.

    Article  MATH  MathSciNet  Google Scholar 

  • Nee, S.C., 2001. Infering speciation rates from phylogenies. Evolution 55(4), 661–668.

    Article  Google Scholar 

  • Nee, S.C., May, R.M., Harvey, P., 1994. The reconstructed evolutionary process. Philos. Trans. Roy. Soc. Lond. Ser. B 344, 305–311.

    Article  Google Scholar 

  • Popovic, L., 2004. Asymptotic genealogy of a critical branching process. Ann. Appl. Probab. 14(4), 2120–2148. ISSN 1050-5164.

    Article  MATH  MathSciNet  Google Scholar 

  • Purvis, A., 1995. A composite estimate of primate phylogeny. Philos. Trans. Roy. Soc. Lond. Ser. B 348, 405–421.

    Article  Google Scholar 

  • Rannala, B., Yang, Z., 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43, 304–311.

    Article  Google Scholar 

  • Reed, W., Hughes, B., 2002. On the size distribution of live genera. J. Theor. Biol. 213(1), 125–135.

    Article  MathSciNet  Google Scholar 

  • Semple, C., Steel, M., 2003. Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Stanhope, M.J., Waddell, V.G., Madsen, O., de Jong, W., Hedges, S.B., Cleven, G.C., Kao, D., Springer, M.S., 1998. Molecular evidence for multiple origins of insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. USA 95, 9967–9972.

    Article  Google Scholar 

  • Vos, R.A., 2006. A new dated supertree of the primates. PhD thesis.

  • Yang, Z., Rannala, B., 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol. 17(7), 717–724.

    Google Scholar 

  • Yule, G.U., 1924. A mathematical theory of evolution: based on the conclusions of Dr. J.C. Willis. Philos. Trans. Roy. Soc. Lond. Ser. B 213, 21–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Gernhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gernhard, T. New Analytic Results for Speciation Times in Neutral Models. Bull. Math. Biol. 70, 1082–1097 (2008). https://doi.org/10.1007/s11538-007-9291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9291-0

Keywords

Navigation