Skip to main content
Log in

Continuous Traveling Waves for Prey-Taxis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatially moving predators are often considered for biological control of invasive species. The question arises as to whether introduced predators are able to stop an advancing pest or foreign population. In recent studies of reaction–diffusion models, it has been shown that the prey invasion can only be stopped if the prey dynamics observes an Allee effect.

In this paper, we include prey-taxis into the model. Prey-taxis describe the active movement of predators to regions of high prey density. This effect leads to the observation that predators are drawn away from the leading edge of a prey invasion where its density is low. This leads to counterintuitive result that prey-taxis can actually reduce the likelihood of effective biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey dependent, ratio-dependent or neither? Trends Ecol. Evol. 15, 337–341.

    Article  Google Scholar 

  • Allee, W.C., Park, O., Emerson, A.E., Park, T., 1949. Principles of Animal Ecology. Saunders, Philadelphia.

    Google Scholar 

  • Auger, P., de la Parra, R.B., Morand, S., Sanchez, E., 2002. A predator–prey model with predators using hawk and dove tactics. Math. Biosci. 177–178, 185–200.

    Article  Google Scholar 

  • Berryman, A.A., Gutierrez, A.P., Arditi, R., 1995. Credible, realistic and useful predator–prey models. Ecology 76, 1980–1885.

    Article  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1996. Models for predator–prey systems at multiple scales. SIAM Rev. 38, 256–286.

    Article  MATH  MathSciNet  Google Scholar 

  • Crawley, M.J., 1992. Natural Enemies: The Population Biology of Predator, Parasites and Disease. Blackwell Scientific, Oxford.

    Google Scholar 

  • DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V., 1975. A model for trophic interactions. Ecology 56, 881–892.

    Article  Google Scholar 

  • Dixon, A.F.G., 2000. Insect Predator–Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dunbar, S.R., 1983. Traveling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Dunbar, S.R., 1984. Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in R 4. Trans. Am. Math. Soc. 286, 557–594.

    Article  MATH  MathSciNet  Google Scholar 

  • Dunbar, S.R., 1986. Traveling waves in diffusive predator–prey equations: periodic orbits and point-to periodic heteroclinic orbits. SIAM J. Appl. Math. 46, 1057–1078.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferran, A.F.G., Dixon, A., 1993. Foraging behavior of ladybird larvae. Eur. J. Entomol. 90, 383–402.

    Google Scholar 

  • Gardner, R., 1984. Existence of traveling wave solutions of predator–prey systems via the connection index. SIAM J. Appl. Math. 44, 56–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Getz, W.M., 1991. A unified approach to multispecies modeling. Nat. Resour. Model. 5, 393–421.

    Google Scholar 

  • Hartman, P., 1964. Ordinary Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  • Hassell, M.P., 1978. Arthropod Predator–Prey Systems. Princeton University Press, New Jersey.

    MATH  Google Scholar 

  • Hastings, A., Harrison, S., McCann, K., 1997. Unexpected spatial patterns in an insect outbreak match a predator diffusion model. Proc. R. Soc. Lond. B 264, 1837–1840.

    Article  Google Scholar 

  • Horstmann, D., 2003. From 1970 until present:the Keller-Segel model in chemotaxis and its consequences. i. Jahresbericht DMV 105(3), 103–165.

    MATH  MathSciNet  Google Scholar 

  • Huang, J., Lu, G., Ruan, S., 2003. Existence of traveling wave solutions in a diffusive predator–prey model. J. Math. Biol. 46, 132–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Jost, C., Arino, O., Arditi, R., 1999. About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32.

    Article  Google Scholar 

  • Kareiva, P., Odell, G., 1987. Swarms of predators exhibit ‘preytaxis’ if individual predators use area–restricted search. Am. Nat. 130, 233–270.

    Article  Google Scholar 

  • Kuang, Y., Beretta, E., 1998. Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406.

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, J., Prey-taxis and its applications. Ph.D. thesis, University of Alberta, Edmonton, AB, Canada (2006)

  • Lewis, M.A., Kareiva, P., 1993. Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 43(2), 141–157.

    Article  MATH  Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology. Springer, New York.

    MATH  Google Scholar 

  • Nanjundiah, V., 1973. Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105.

    Article  Google Scholar 

  • Okubo, A., Levin, S.A., 2000. Diffusion and Ecological Problems: New Perspectives, 2nd edn. Springer, New York.

    Google Scholar 

  • Owen, M.R., Lewis, M.A., 2001. How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63, 655–684.

    Article  Google Scholar 

  • Segel, L.A. (Ed.), 1980. Mathematical Models in Molecular and Cellular Biology. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.

    Google Scholar 

  • Turchin, P., 2003. Complex Population Dynamics. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Tyson, R., Lubkin, S.R., Murray, J.D., 1999. Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38, 359–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Wangersky, P.J., 1978. Lotka–Volterra population models. Ann. Rev. Ecol. Syst. 9, 189–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.M., Hillen, T. & Lewis, M.A. Continuous Traveling Waves for Prey-Taxis. Bull. Math. Biol. 70, 654–676 (2008). https://doi.org/10.1007/s11538-007-9271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9271-4

Keywords

Navigation