Skip to main content
Log in

Distance between AER and ZPA Is Defined by Feed-Forward Loop and Is Stabilized by their Feedback Loop in Vertebrate Limb Bud

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the development of organs, multiple morphogen sources are often involved, and interact with each other. For example, the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) are major morphogen sources in the limb bud formation of vertebrates. Fgf expression in the AER and Shh expression in the ZPA are maintained by their positive feedback regulation mediated by diffusible molecules, FGF and SHH. A recent experimental observation suggests that the FGF-signal regulates the Shh expression in a feed-forward manner with activation and repression regulatory pathways. We study the coupled dynamics of Shh expression in the ZPA and Fgf expression in the AER, and the relationship of the relative position between AER and ZPA. We first show that with the feed-forward regulation only, the peak of ZPA activity can be formed distant from the AER as observed experimentally. Then, we clarify that the robustness of the ZPA spatial pattern to changes in system parameters is enhanced by adding the feedback regulation between the AER and the ZPA. Furthermore, sensitivity analysis shows that there exists the optimal feedback strength where the robustness is the most improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boulet, A.M., Moon, A.M., Arenkiel, B.R., Capecchi, M.R., 2004. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev. Biol. 273, 361–372.

    Article  Google Scholar 

  • Capdevila, J., Tsukui, T., Esteban, C.R., Zappavigan, V., Belmonte, J.C.I., 1999. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by gremlin. Cell 4, 839–849.

    Google Scholar 

  • Charite, J., Graaff, W., Shen, S., Deschamps, J., 1994. Ectopic expression of Hox-8 cause duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78, 589–601.

    Article  Google Scholar 

  • Charite, J., McFadden, D.G., Olson, E.N., 2000. The bHLH transcription factor of dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 127, 2461–2470.

    Google Scholar 

  • Chaturvedi, R., Huang, C., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M., 2004. A hybrid discrete-continuum model for 3-D skeletogenesis of the vertebrate limb. In: Lecture Notes in Computer Science, vol. 3305. pp. 543–552.

  • Chiang, C., Litingtung, Y., Harris, M.P., Simandl, B.K., Li, Y., Beachy, P.A., Fallon, J.F., 2001. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236, 421–435.

    Article  Google Scholar 

  • Dillon, R., Othmer, H.G., 1999. A mathematical model for outgrowth and spatial pattering of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.

    Article  Google Scholar 

  • Drossopoulou, G., Lewis, K.E., Sanz-Ezquerro, J.J., Nikbakht, N., McMahon, A.P., Hofmann, C., Tickel, C., 2000. A model for antero-posterior patterning of the vertebrate limb based on sequential long- and short-range Shh signaling and Bmp signaling. Development 127, 1337–1348.

    Google Scholar 

  • Dudley, A.T., Tabin, C.J., 2000. Constructive antagonism in limb development. Curr. Opin. Genet. Dev. 10, 387–392.

    Article  Google Scholar 

  • Fernandez-Teran, M., Piedra, M.E., Kathiriya, I.S., Srivastava, D., Rodriguez-Rey, J.C., Ros, M.A., 2000. Role of dHAND in the antero-posterior polarization of the limb bud: implications for the Sonic hedgehog pathway. Development 127, 2133–2142.

    Google Scholar 

  • Ferrell, J.E. Jr., 1998. How regulated protein translocation can produce switch-like responses. TIBS 23, 461–465.

    Google Scholar 

  • Goetz, J.A., Suber, L.M., Zeng, X., Robbins, D.J., 2002. Sonic Hedgehog as a mediator of long-range signaling. BioEssays 24, 157–165.

    Article  Google Scholar 

  • Goldbeter, A., Koshland, D.E. Jr., 1981. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. 78, 6840–6844.

    Article  MathSciNet  Google Scholar 

  • Goldbeter, A., Koshland, D.E. Jr., 1984. Ultrasensitivity in biochemical systems controlled by covalent modification. J. Biol. Chem. 259, 14441–14447.

    Google Scholar 

  • Hentschel, H., Glimm, T., Glazier, J., Newman, S., 2004. Dynamical mechanism for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B. 271, 1713–1722.

    Article  Google Scholar 

  • Ishihara, S., Fujimoto, K., Shibata, T., 2005. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells 10, 1025–1038.

    Article  Google Scholar 

  • Johnson, R.L., Tabin, C.J., 1997. Molecular models for vertebrate limb development. Cell 90, 979–990.

    Article  Google Scholar 

  • Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., Brown, G.C., 1997. Quantification of information transfer via cellular signal transduction pathways. FEBS Lett. 414, 430–434.

    Article  Google Scholar 

  • Kraus, P., Fraidenraich, D., Loomis, C.A., 2001. Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech. Dev. 100, 45–58.

    Article  Google Scholar 

  • Laufer, E., Nelson, C.E., Johnson, R.L., Morgan, B.A., Tabin, C.J., 1994. Sonic hedgehog and Fgf-4 Act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003.

    Article  Google Scholar 

  • Lewandoski, M., Sun, X., Martin, G.R., 2000. Fgf8 signalling from the AER is essential for normal limb development. Nat. Genet. 26, 460–463.

    Article  Google Scholar 

  • Lu, P., Minowada, G., Martin, G.R., 2006. Increasing Fgf4 expression in the mouse limb bud causes polydactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development 133, 33–42.

    Article  Google Scholar 

  • Maini, P.K., Solursh, M., 1991. Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91–133.

    Article  Google Scholar 

  • Mangan, S., Alon, U., 2003. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. 100, 11980–11985.

    Article  Google Scholar 

  • Mangan, S., Itzkovitz, S., Zaslaver, A., Alon, U., 2006. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol. 356, 1073–1081.

    Article  Google Scholar 

  • Martin, G.R., 1998. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586.

    Google Scholar 

  • McGlinn, E., Tabin, C.J., 2006. Mechanistic insight into how Shh patterns the vertebrate limb. Curr. Opin. Genet. Dev. 16, 426–432.

    Article  Google Scholar 

  • Melen, G.J., Levy, S., Barkai, N., Shilo, B.Z., 2005. Threshold responses to morphogen gradients by zero-order ultrasensitivity. Mol. Syst. Biol. 13

  • Michos, O., Panman, L., Vintersten, K., Beier, K., Zeller, R., Zuniga, A., 2004. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131, 3401–3410.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in Doublefoot mutant mouse limb—turing reaction-diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Moon, A.M., Capecchi, M.R., 2000. Fgf8 is required for outgrowth and pattering of the limbs. Nat. Genet. 26, 455–459.

    Article  Google Scholar 

  • Murray, J.D., Maini, P.K., Tranquillo, R.T., 1988. Mechanochemical models for generating biological pattern and form in development. Phys. Rep. 171, 59–84.

    Article  MathSciNet  Google Scholar 

  • Newman, S.A., Frisch, H.L., 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668.

    Article  Google Scholar 

  • Niswander, L., 2002. Interplay between the molecular signals that control vertebrate limb development. Int. J. Dev. Biol. 46, 877–881.

    Google Scholar 

  • Niswander, L., Jeffrey, S., Martin, G.R., Tickle, C., 1994. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612.

    Article  Google Scholar 

  • Oster, G.F., Murray, J.D., Maini, P.K., 1985. A model for chondrogenic condensations in the developing limb—the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morphol. 89, 93–112.

    Google Scholar 

  • Pagan, S.M., Ros, M.A., Tabin, C., Fallon, J.F., 1996. Surgical removal of limb bud Sonic hedgehog results in posterior skeletal defects. Dev. Biol. 180, 35–40.

    Article  Google Scholar 

  • Panman, L., Zeller, R., 2003. Patterning the limb before and after SHH signalling. ASGBI 202, 3–12.

    Google Scholar 

  • Panman, L., Galli, A., Lagarde, N., Michos, O., Soete, G., Zuniga, A., Zeller, R., 2006. Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signaling. Development 133, 3419–3428.

    Article  Google Scholar 

  • Riddle, R.D., Johnson, R.L., Laufer, E., Tabin, C.J., 1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416.

    Article  Google Scholar 

  • Rowe, D.A., Fallon, J.F., 1982. The proximodistal determination of skeletal parts in the developing chick leg. J. Embryol. Exp. Morphol. 68, 1–7.

    Google Scholar 

  • Saunders, J.W. Jr., 1948. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–403.

    Article  Google Scholar 

  • Saunders, J.W. Jr., Gasseling, M.T., 1968. Ectoderm-mesenchymal interaction in the origins of wing symmetry. In: Fleischmajer, R., Billingham, R.E. (Eds.), Epithelial-Mesenchymal Interactions, pp. 78-97.

  • Shen-Orr, S.S., Milo, R., Mangan, S., Alon, A., 2002. Networks motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–69.

    Article  Google Scholar 

  • Summerbell, D., 1974. Quantitative analysis of the effect of excision of the AER from the chick limb-bud. J. Embryol. Exp. Morph. 32, 651–660.

    Google Scholar 

  • Sun, X., Lewandoski, M., Meyers, E.N., Liu, Y.H., Maxson, R.E. Jr., Martin, G.R., 2000. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat. Genet. 25, 83–86.

    Article  Google Scholar 

  • Sun, X., Mariani, F.V., Martin, G.R., 2002. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508.

    Article  Google Scholar 

  • Tanaka, M., Cohn, M.J., Ashby, P., Davey, M., Martin, P., Tickle, C., 2000. Distribution of polarizing activity and potential for limb formation in mouse and chick embryos and possible relationships to polydactyly. Development 127, 4011–4021.

    Google Scholar 

  • TeWelscher, P., Fernandez-Teran, M., Ros, M.A., Zeller, R., 2002. Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev. 16, 421–426.

    Article  Google Scholar 

  • Verheyden, J.M., Lewandoski, M., Deng, C., Harfe, B.D., Sun, X., 2005. Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 132, 4235–4245.

    Article  Google Scholar 

  • Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  Google Scholar 

  • Wolpert, L., 1998. Principles of Development. Oxford University Press, Oxford.

    Google Scholar 

  • Zuniga, A., Haramis, A.G., McMahon, A.P., Zeller, R., 1999. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Morishita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirashima, T., Iwasa, Y. & Morishita, Y. Distance between AER and ZPA Is Defined by Feed-Forward Loop and Is Stabilized by their Feedback Loop in Vertebrate Limb Bud. Bull. Math. Biol. 70, 438–459 (2008). https://doi.org/10.1007/s11538-007-9263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9263-4

Keywords

Navigation