Skip to main content

Advertisement

Log in

Modeling the VEGF–Bcl-2–CXCL8 Pathway in Intratumoral Agiogenesis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent experiments show that vascular endothelial growth factor (VEGF) is the crucial mediator of downstream events that ultimately lead to enhanced endothelial cell survival and increased vascular density within many tumors. The newly discovered pathway involves up-regulation of the anti-apoptotic protein Bcl-2, which in turn leads to increased production of interleukin-8 (CXCL8). The VEGF–Bcl-2–CXCL8 pathway suggests new targets for the development of anti-angiogenic strategies including short interfering RNA (siRNA) that silence the CXCL8 gene and small molecule inhibitors of Bcl-2. In this paper, we present and validate a mathematical model designed to predict the effect of the therapeutic blockage of VEGF, CXCL8, and Bcl-2 at different stages of tumor progression. In agreement with experimental observations, the model predicts that curtailing the production of CXCL8 early in development can result in a delay in tumor growth and vascular development; however, it has little effect when applied at late stages of tumor progression. Numerical simulations also show that blocking Bcl-2 up-regulation, either at early stages or after the tumor has fully developed, ensures that both microvascular and tumor cell density stabilize at low values representing growth control. These results provide insight into those aspects of the VEGF–Bcl-2–CXCL8 pathway, which independently and in combination, are crucial mediators of tumor growth and vascular development. Continued quantitative modeling in this direction may have profound implications for the development of novel therapies directed against specific proteins and chemokines to alter tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A.R., Chaplain, M.A., 1998. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899.

    Article  MATH  Google Scholar 

  • Ausprunk, D.H., Folkman, J., 1977. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14(1), 53–65.

    Article  Google Scholar 

  • Bach, F., Uddin, F.J., Burke, D., 2007. Angiopoietins in malignancy. Eur. J. Surg. Oncol. 33(1), 7–15.

    Article  Google Scholar 

  • Baxter, L.T., Jain, R.K., 1991. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism. Microvasc. Res. 41(1), 5–23.

    Article  Google Scholar 

  • Bernatchez, P.N., Soker, S., Sirois, M.G., 1999. Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependant. J. Biol. Chem. 274(43), 31047–31054.

    Article  Google Scholar 

  • Cao, Y., 2004. Antiangiogenic cancer therapy. Semin. Cancer Biol. 14(2), 139–145.

    Article  Google Scholar 

  • Chaplain, M.A., Anderson, A.R., 1996. Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16(4-5), 222–234.

    Google Scholar 

  • Daugulis, P., Arakelyan, L., Ginosar, Y., Agur, Z., 2004. Hopf point analysis for angiogenesis models. Discret. Contin. Dyn. Syst. Ser. B 4(1), 29–38.

    MATH  MathSciNet  Google Scholar 

  • Dong, Z., Song, W., Sun, Q., Zeitlin, B.D., Karl, E., Spencer, D.M., Jain, H.V., Jackson, T., Núñez, G., Nör, J.E., 2007. Endothelial cell apoptosis and microvessel disruption. Exp. Cell Res., accepted.

  • Dvorak, H.F., Brown, L.F., Detmar, M., Dvorak, A.M., 1995. Vascular permeability factor/vascular endothelial growth factor, vascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146(5), 1029–1039.

    Google Scholar 

  • Ferrara, N., 1999. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 77(7), 527–543.

    Article  Google Scholar 

  • Ferrara, N., 2002. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803.

    Google Scholar 

  • Ferrara, N., Gerber, H.P., LeCouter, J., 2003. The biology of VEGF and its receptors. Nat. Med. 9(6), 669–676.

    Article  Google Scholar 

  • Folkman, J., 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186.

    Article  Google Scholar 

  • Gammack, D., Byrne, H.M., 2001. Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia. Bull. Math. Biol. 63(1), 135–166.

    Article  Google Scholar 

  • Garber, K., 2002. Angiogenesis inhibitors suffer new setback. Nat. Biotechnol. 20, 1067–1068.

    Article  Google Scholar 

  • Gille, H., Kowalski, J., Li, B., LeCouter, J., Moffat, B., Zioncheck, T.F., Pelletier, N., Ferrara, N., 2001. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J. Biol. Chem. 276(5), 3222–3230.

    Article  Google Scholar 

  • Guglielmi, N., Hairer, E., 2001. Implementing Radau IIA methods for stiff delay differential equations. Computing 67(1), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, M.J., Sleeman, B.D., 2000. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol. 202(2), 95–112.

    Article  Google Scholar 

  • Holmes, W.E., Lee, J., Kuang, W.J., Rice, G.C., Wood, W.I., 1991. Structure and functional expression of a human interleukin-8 receptor. Science 253(5025), 1278–1280.

    Article  Google Scholar 

  • Horuk, R., 1994. The interleukin-8-receptor family: from chemokines to malaria. Immunol. Today 15(4), 169–174.

    Article  Google Scholar 

  • Karl, E., Warner, K., Zeitlin, B., Kaneko, T., Wurtzel, L., Jin, T., Chang, J., Wang, S., Wang, C.Y., Strieter, R.M., Nunez, G., Polverini, P.J., Nör, J.E., 2005. Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. Cancer Res. 65(12), 5063–5069.

    Article  Google Scholar 

  • Ke, L.D., Shi, Y.X., Im, S.A., Chen, X., Yung, W.K., 2000. The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines. Clin. Cancer Res. 6(6), 2562–2572.

    Google Scholar 

  • Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., Ferrara, N., 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423), 841–844.

    Article  Google Scholar 

  • Klintworth, G.K., 1973. The hamster cheek pouch: an experimental model of corneal vascularization. Am. J. Pathol. 73(3), 691–710.

    Google Scholar 

  • Koch, A.E., Polverini, P.J., Kunkel, S.L., Harlow, L.A., DiPietro, L.A., Elner, V.M., Elner, S.G., Strieter, R.M., 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089), 1798–1801.

    Article  Google Scholar 

  • Kuang, Y., Nagy, J.D., Elser, J.J., 2004. Biological stoichiometry of tumor dynamics. Discret. Contin. Dyn. Syst. Ser. B 4(1), 221–240.

    MATH  MathSciNet  Google Scholar 

  • Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935), 1306–1309.

    Article  Google Scholar 

  • Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M., 2000. A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168(1), 77–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Levine, H.A., Pamuk, S., Sleeman, B.D., Nilsen-Hamilton, M., 2001. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol. 63(5), 801–863.

    Article  Google Scholar 

  • Levine, H.A., Tucker, A.L., Nilsen-Hamilton, M., 2002. A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20(4), 155–175.

    Article  Google Scholar 

  • Mac Gabhann, F., Popel, A.S., 2004. Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286(1), H153–H164.

    Article  Google Scholar 

  • McMahon, G., 2000. VEGF receptor signalling in tumor angiogenesis. Oncologist 5, 3–10.

    Article  Google Scholar 

  • Maher, J.J., 1995. Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (CINC) in the setting of ethanol. Am. J. Physiol. 269(4 Pt 1), G518–G523.

    Google Scholar 

  • Mukaida, N., 2003. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 284(4), L566–L577.

    Google Scholar 

  • Nagy, J.D., 2004. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol. 66(4), 663–687.

    Article  MathSciNet  Google Scholar 

  • Nguyen, M., Shing, Y., Folkman, J., 1994. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47(1), 31–40.

    Article  Google Scholar 

  • Nör, J.E., Christensen, J., Mooney, D.J., Polverini, P.J., 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 154(2), 375–384.

    Google Scholar 

  • Nör, J.E., Christensen, J., Liu, J., Peters, M., Mooney, D.J., Strieter, R.M., Polverini, P.J., 2001a. Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res. 61(5), 2183–2188.

    Google Scholar 

  • Nör, J.E., Peters, M.C., Christensen, J.B., Sutorik, M.M., Linn, S., Khan, M.K., Addison, C.L., Mooney, D.J., Polverini, P.J., 2001b. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81(4), 453–463.

    Google Scholar 

  • Norrby, K., 1998. Microvascular density in terms of number and length of microvessel segments per unit tissue volume in mammalian angiogenesis. Microvasc. Res. 55(1), 43–53.

    Article  Google Scholar 

  • Ohta, M., Kitadai, Y., Tanaka, S., Yoshihara, M., Yasui, W., Mukaida, N., Haruma, K., Chayama, K., 2002. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int. J. Cancer 102(3), 220–224.

    Article  Google Scholar 

  • Oikawa, T., Sasaki, M., Inose, M., 1997. Effect of cytogenin, a novel microbial product, on embryonic and tumor cell induced angiogenic responses in vivo. Anticancer Res. 17(3C), 1881–1886.

    Google Scholar 

  • Patan, S., 2000. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50(1–2), 1–15.

    Google Scholar 

  • Pepper, M.S., Ferrara, N., Orci, L., Montesano, R., 1992. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189(2), 824–831.

    Article  Google Scholar 

  • Pettet, G.J., Byrne, H.M., McElwain, D.L., Norbury, J., 1996a. A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 136(1), 35–63.

    Article  MATH  Google Scholar 

  • Pettet, G., Chaplain, M.A., McElwain, D.L., Byrne, H.M., 1996b. On the role of angiogenesis in wound healing. Proc. Biol. Sci. 263(1376), 1487–1493.

    Article  Google Scholar 

  • Plank, M.J., Sleeman, B.D., 2003. A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math. Med. Biol. 20(2), 135–181.

    Article  MATH  Google Scholar 

  • Plank, M.J., Sleeman, B.D., Jones, P.F., 2004. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J. Theor. Biol. 229(4), 435–454.

    Article  MathSciNet  Google Scholar 

  • Pradeep, C.R., Sunila, E.S., Kuttan, G., 2005. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr. Cancer Ther. 4(4), 315–321.

    Article  Google Scholar 

  • Ribatti, D., Vacca, A., Roncali, L., Dammacco, F., 1996. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40(6), 1189–1197.

    Google Scholar 

  • Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., Shima, D.T., 2002. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16(20), 2684–2698.

    Article  Google Scholar 

  • Salcedo, R., Ponce, M.L., Young, H.A., Wasserman, K., Ward, J.M., Kleinman, H.K., Oppenheim, J.J., Murphy, W.J., 2000. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1), 34–40.

    Google Scholar 

  • Samanta, A.K., Oppenheim, J.J., Matsushima, K., 1989. Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J. Exp. Med. 169(3), 1185–1189.

    Article  Google Scholar 

  • Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F., 2003. Modeling the early stages of vascular network assembly. EMBO J. 22(8), 1771–1779.

    Article  Google Scholar 

  • Shweiki, D., Neeman, M., Itin, A., Keshet, E., 1995. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc. Natl. Acad. Sci. USA 92(3), 768–772.

    Article  Google Scholar 

  • Siemeister, G., Schirner, M., Reusch, P., Barleon, B., Marme, D., Martiny-Baron, G., 1998. An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc. Natl. Acad. Sci. USA 95(8), 4625–4629.

    Article  Google Scholar 

  • Smith, D.R., Polverini, P.J., Kunkel, S.L., Orringer, M.B., Whyte, R.I., Burdick, M.D., Wilke, C.A., Strieter, R.M., 1994. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J. Exp. Med. 179(5), 1409–1415.

    Article  Google Scholar 

  • Spyridopoulos, I., Brogi, E., Kearney, M., Sullivan, A.B., Cetrulo, C., Isner, J.M., Losordo, D.W., 1997. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J. Mol. Cell. Cardiol. 29(5), 1321–1330.

    Article  Google Scholar 

  • Stewart, M., Turley, H., Cook, N., Pezzella, F., Pillai, G., Ogilvie, D., Cartlidge, S., Paterson, D., Copley, C., Kendrew, J., Barnes, C., Harris, A.L., Gatter, K.C., 2003. The angiogenic receptor KDR is widely distributed in human tissues and tumours and relocates intracellularly on phosphorylation. An immunohistochemical study. Histopathology 43(1), 33–39.

    Article  Google Scholar 

  • Strieter, R.M., Kunkel, S.L., Elner, V.M., Martonyi, C.L., Koch, A.E., Polverini, P.J., Elner, S.G., 1992. Interleukin-8. A corneal factor that induces neovascularization. Am. J. Pathol. 141(6), 1279–1284.

    Google Scholar 

  • Tee, D., DiStefano, J., 2004. Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies. J. Cancer Res. Clinical Oncol. 130(1), 15–24.

    Article  Google Scholar 

  • Terranova, V.P., DiFlorio, R., Lyall, R.M., Hic, S., Friesel, R., Maciag, T., 1985. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell. Biol. 101(6), 2330–2334.

    Article  Google Scholar 

  • Trettel, F., Di Bartolomeo, S., Lauro, C., Catalano, M., Ciotti, M.T., Limatola, C., 2003. Ligand-independent CXCR2 dimerization. J. Biol. Chem. 278(42), 40980–40988.

    Article  Google Scholar 

  • Ueno, H., Li, J.J., Masuda, S., Qi, Z., Yamamoto, H., Takeshita, A., 1997. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 17(11), 2453–2460.

    Google Scholar 

  • Wang, D., Lehman, R.E., Donner, D.B., Matli, M.R., Warren, R.S., Welton, M.L., 2002. Expression and endocytosis of VEGF and its receptors in human colonic vascular endothelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282(6), G1088–G1096.

    Google Scholar 

  • Ward, J.P., King, J.R., 1999. Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16(2), 171–211.

    Article  MATH  Google Scholar 

  • Wilson, S., Wilkinson, G., Milligan, G., 2005. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J. Biol. Chem. 280(31), 28663–28674.

    Article  Google Scholar 

  • Yonekura, K., Basaki, Y., Chikahisa, L., 1999. UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin. Cancer Res. 5(8), 2185–2191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trachette L. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, H.V., Nör, J.E. & Jackson, T.L. Modeling the VEGF–Bcl-2–CXCL8 Pathway in Intratumoral Agiogenesis. Bull. Math. Biol. 70, 89–117 (2008). https://doi.org/10.1007/s11538-007-9242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9242-9

Keywords

Navigation