Skip to main content
Log in

Phenologically-Structured Predator-Prey Dynamics with Temperature Dependence

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Studies document the fact that temperature changes strongly affect interactions in many consumer-resource systems through altered, or shifted, phenologies. The mistiming of events, such as migration or emergence times, or the contraction or expansion of development times can upset the normal synchronization and lead to increased or decreased predation events. In this paper, we formulate a continuous time, phenologically-structured model of predator-prey interactions that is driven by temperature variations. It is particularly applicable to arthropod interactions because their development rates are so strongly temperature related. The model takes the form of a system of partial differential-integral equations for the species’ population densities in development-time variables. In special cases, the model is analytically tractable and we find a closed-form solution. By calculating density variations under different temperature regimes, the model gives a quantitative method for assessing the effects of global temperature change on consumer-resource interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L.J.S., 2007. An Introduction to Mathematical Biology. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Auslander, D.M., Oster, G.F., Huffaker, C.B., 1974. Dynamics of interacting populations. J. Franklin Inst. 297(5), 345–376.

    Article  Google Scholar 

  • Bazzaz, F.A., 1990. The response of natural ecosystems to rising global CO2 levels. Annu. Rev. Ecol. Syst. 21, 167–196.

    Article  Google Scholar 

  • Bentz, B.J., Logan, J.A., Amman, G.D., 1991. Temperature dependent development of the mountain pine beetle and simulation of its phenology. Can. Entomol. 123, 1083–1094.

    Google Scholar 

  • Burns, W., 2000. Bibliography: climate change and its impact on species and ecosystems, www.eelink.net/~asilwildlife/CCWildlife.html.

  • Buse, A., Good, J.E.G., 1996. Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in pedunculate oak (Quercus robur L.) under simulated climate change. Ecol. Entomol. 21, 335–343.

    Article  Google Scholar 

  • Coleman, C.S., Frauenthal, J.C., 1983. Satiable egg-eating predators. Math. Biosci. 63, 99–119.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J.M., 1998. An Introduction to Age-Structured Population Dynamics, CBMS-NSF Regional Conference Series, vol. 71. SIAM, Philadelphia.

    Google Scholar 

  • de Roos, A.M., 1997. A gentle introduction to physiologically structured population models. In: Tuljapurkar, S., Caswell, H. (Eds.), Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, pp. 119–204. Chapman & Hall, New York. Chap. 5.

    Google Scholar 

  • Garvie, M.R., 2007. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbert, E., Powell, J.A., Logan, J.A., Bentz, B.J., 2004. Comparison of three models predicting developmental milestones given environmental and individual variation. Bull. Math. Biol. 66(6), 1821–1850.

    Article  MathSciNet  Google Scholar 

  • Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M., Brown, J.M., 2002. Effects of size and temperature on development time. Nature 17, 70–73.

    Article  Google Scholar 

  • Gurtin, M.E., Levine, D.S., 1979. On predator-prey interaction with predation dependent on prey age. Math. Biosci. 47, 201–219.

    Article  MathSciNet  Google Scholar 

  • Harrington, R., Woiwod, I., Sparks, T., 1999. Climate change and trophic interactions. Trends Evol. Ecol. 14, 146–150.

    Article  Google Scholar 

  • Hilbert, D.W., Logan, J.A., 1983. Empirical model of nymphal development for the migratory grasshopper M. sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12, 1–5.

    Google Scholar 

  • Hill, J.K., Hodkinson, I.D., 1992. Effect of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera: Psylloidea) on dwarf willow (Salix lapponum) in Norway. Ecol. Entomol. 20, 237–244.

    Google Scholar 

  • Joern, A., Gaines, S.B., 1990. Population dynamics and regulation in grasshoppers. In: Chapman, R.F., Joern, A. (Eds.), Biology of Grasshoppers, pp. 415–482. Wiley, New York. Chap. 14.

    Google Scholar 

  • Joern, A., Logan, J.D., Wolesensky, W., 2005. Effects of global climate change on agricultural pests: possible impacts and dynamics at population, species interaction, and community levels. In: Lal, R., Stewart, B.A., Uphoff, N., Hansen, D.O. (Eds.), Climate change and global food security, pp. 321–362. CRC Press, Boca Raton. Chap. 13.

    Google Scholar 

  • Joern, A., Danner, B.J., Logan, J.D., Wolesensky, W., 2006. Natural history of mass-action in predator-prey models: a case study from wolf spiders and grasshoppers. Am. Midlands Nat. 156, 52–64.

    Article  Google Scholar 

  • Kareiva, P.M., Kingsolver, J.G., Huey, R.B., 1993. Biotic Interactions and Global Change. Sinauer, Sunderland.

    Google Scholar 

  • Kot, M., 2000. Elements of Mathematical Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lactin, D.J., Johnson, R.R., 1998. Environmental, physical, and behavioural determinants of body temperature in grasshopper nymphs (Orthoptera: Acrididae). Can. Entomol. 130, 551–557.

    Article  Google Scholar 

  • Levine, D.S., 1981. On the stability of a predator-prey system with egg-eating predators. Math. Biosci. 56, 27–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, D., Jackson, J.J., 1996. How temperature affects development and reproduction in spiders. J. Thermal Biol. 21(4), 245–274.

    Article  Google Scholar 

  • Logan, J.D., 1994. Introduction to Nonlinear Partial Differential Equations. Wiley–Interscience, New York.

    MATH  Google Scholar 

  • Logan, J.D., 2006. Applied Mathematics, 3rd edn. Wiley–Interscience, New York.

    MATH  Google Scholar 

  • Logan, J.A., Bentz, B.J., 1999. Model analysis of mountain pine beetle seasonality. Environ. Entomol. 28, 924–934.

    Google Scholar 

  • Logan, J.A., Powell, J.A., 2001. Ghost forests, global warming, and the mountain pine beetle. Am. Entomologist 47(3), 160–172.

    Google Scholar 

  • Logan, J.D., Wolesensky, W., 2007a. Accounting for temperature in predator functional responses. Nat. Resour. Model., in press.

  • Logan, J.D., Wolesensky, W., 2007b. An index to measure the effects of temperature change on trophic interactions. J. Theor. Biol. 246, 366–376.

    Article  MathSciNet  Google Scholar 

  • Logan, J.D., Wolesensky, W., Joern, A., 2006. Temperature-dependent phenology and predation in arthropod systems. Ecol. Modell. 196, 471–482.

    Article  Google Scholar 

  • Logan, J.D., Wolesensky, W., Joern, A., 2007. Insect development under predation risk, variable temperature, and variable food quality. Math. Biosci. Eng. 4(1), 47–65.

    MATH  MathSciNet  Google Scholar 

  • Metz, J.A.J., Diekmann, O. (Eds.), 1986. The Dynamics of Physiologically Structured Populations. Springer, Berlin.

    MATH  Google Scholar 

  • Metz, J.A.J., de Roos, A.M., van den Bosch, F., 1988. Population models incorporating physiological structure: a quick survey of the basic concepts and an application to size-structured population dynamics in waterfleas. In: Ebenman, B., Persson, L. (Eds.), Size-structured populations, pp. 106–126. Springer, Berlin.

    Google Scholar 

  • Powell, J.A., Jenkins, J.L., Logan, J.A., Bentz, B.J., 2000. Seasonal temperature alone can synchronize life cycles. Bull. Math. Biol. 62, 977–998.

    Article  Google Scholar 

  • Rochat, J., Gutierrez, A.P., 2001. Weather-mediated regulation of olive scale by two parasitoids. J. Animal Ecol. 70, 476–490.

    Article  Google Scholar 

  • Saleem, M., 1983. Predator-prey relationships: egg-eating predators. Math. Biosci. 65, 187–197.

    Article  MATH  Google Scholar 

  • Saleem, M., 1984. Egg-eating age-structured predators in interaction with age-structured prey. Math. Biosci. 70, 91–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Shenk, H.J., 1996. Modeling the effect of temperature on growth and persistence of tree species: a critical review of tree population models. Ecol. Modell. 92, 1–32.

    Article  Google Scholar 

  • Smith, J.M., 1974. Models in Ecology. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Thompson, R.W., Dibiasio, D., Mendis, C., 1982. Predator-prey interactions: egg-eating predators. Math. Biosci. 60, 109–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Visser, M.E., Both, C., 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc. Roy. Soc. B 272, 2561–2569.

    Article  Google Scholar 

  • Visser, M.E., Holleman, L.J.M., 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Roy. Soc. B 268, 289–294.

    Article  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416, 389–395.

    Article  Google Scholar 

  • Wermelinger, B., Seifert, M., 1999. Temperature-dependent reproduction of the spruce beetle Ips typographus, and the analysis of potential population growth. Ecol. Entomol. 24, 103–110.

    Article  Google Scholar 

  • Wolesensky, W., Logan, J.D., 2007. An individual, stochastic model of growth, incorporating state-dependent risk and random foraging and climate. Math. Biosci. Eng. 4(1), 67–84.

    MATH  MathSciNet  Google Scholar 

  • Wollkind, D., Logan, J.A., 1978. Temperature-dependent predator-prey mite ecosystem on apple tree foliage. J. Math. Biol. 6, 265–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Logan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, J.D. Phenologically-Structured Predator-Prey Dynamics with Temperature Dependence. Bull. Math. Biol. 70, 1–20 (2008). https://doi.org/10.1007/s11538-007-9237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9237-6

Keywords

Navigation