Skip to main content

Advertisement

Log in

Soft Tissue Modelling of Cardiac Fibres for Use in Coupled Mechano-Electric Simulations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The numerical solution of the coupled system of partial differential and ordinary differential equations that model the whole heart in three dimensions is a considerable computational challenge. As a consequence, it is not computationally practical—either in terms of memory or time—to repeat simulations on a finer computational mesh to ensure that convergence of the solution has been attained. In an attempt to avoid this problem while retaining mathematical rigour, we derive a one dimensional model of a cardiac fibre that takes account of elasticity properties in three structurally defined axes within the myocardial tissue. This model of a cardiac fibre is then coupled with an electrophysiological cell model and a model of cellular electromechanics to allow us to simulate the coupling of the electrical and mechanical activity of the heart. We demonstrate that currently used numerical methods for coupling electrical and mechanical activity do not work in this case, and identify appropriate numerical techniques that may be used when solving the governing equations. This allows us to perform a series of simulations that: (i) investigate the effect of some of the assumptions inherent in other models; and (ii) reproduce qualitatively some experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • cellML. http://www.cellml.org/examples/repository/index.html#cardiac_ep_models.

  • Choi, B.-R., Salama, G., 2000. Simultaneous maps of optical action potentials and calcium transients in guinea–pig hearts: mechanisms underlying concordant alternans. J. Physiol. 529, 171–88.

    Article  Google Scholar 

  • Costa, K.D., Holmes, J.W., McCulloch, A.D., 2001. Modelling cardiac mechanical properties in three dimensions. Philos. Trans. Roy. Soc. Lond. A 359, 1233–250.

    Article  MATH  Google Scholar 

  • Janz, R.F., Kubert, B.R., Moriarty, T.F., 1974. Deformation of the diastolic left ventricle—II. Nonlinear geometric effects. J. Biomech. 7, 509–16.

    Article  Google Scholar 

  • Guccione, J.M., Costa, K.D., McCulloch, A.D., 1995. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28, 1167–177.

    Article  Google Scholar 

  • Hunter, P.J., Nash, M.P., Sands, G.B., 1997. Computational electromechanics of the heart. In: Panfilov, A.V., Holden, A.V. (Eds.), Computational Biology of the Heart. Wiley, West Sussex.

    Google Scholar 

  • Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J., 1998. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–31.

    Article  Google Scholar 

  • Hunter, P.J., Pullan, A.J., Smaill, B.H., 2003. Modelling total heart function. Annu. Rev. Biomed. Eng. 5, 147–77.

    Article  Google Scholar 

  • Keener, J.P., Sneyd, J., 1998. Mathematical Physiology. Springer, New York.

    MATH  Google Scholar 

  • Makridakis, C.G., 1993. Finite element approximations of nonlinear elastic waves. Math. Comput. 61, 569–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Morton, K.W., Mayers, D.F., 1994. Numerical Solution of Partial Differential Equations. University Press, Cambridge.

    MATH  Google Scholar 

  • Nash, M.P., Hunter, P.J., 2000. Computational mechanics of the heart. J. Elast. 61, 113–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Nash, M.P., Panfilov, A.V., 2004. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–22.

    Article  Google Scholar 

  • Nickerson, D.P., 2004. Modelling cardiac electro-mechanics: from cellML to the whole heart. PhD thesis, University of Auckland.

  • Nickerson, D.P., Smith, N.P., Hunter, P.J., 2005. New developments in a strongly coupled cardiac electromechanical model. Europace 7, S118–S127.

    Article  Google Scholar 

  • Niederer, S.A., Hunter, P.J., Smith, N.P., 2006. A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90, 1697–722.

    Article  Google Scholar 

  • Noble, D., Varghese, A., Kohl, P., Noble, P.J., 1998. Improved guinea-pig ventricular cell model incorporating a diadic space, I Kr and I Ks , and length- and tension-dependent processes. Can. J. Cardiol. 14, 123–34.

    Google Scholar 

  • Remme, E.W., Nash, M.P., Hunter, P.J., 2005 Distributions of myocyte stretch, stress and work in models of normal and infarcted ventricles. In: Kohl, P., Sachs, F., Franz, M.R. (Eds.), Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient. Saunders–Elsevier, UK.

    Google Scholar 

  • Schneider, W., Bortfield, T., Schlegel, W., 2000. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45, 459–78.

    Article  Google Scholar 

  • Simnett, S.J., Johns, E.C., Lipscomb, S., Mulligan, I.P., Ashley, C.C., 1998. Effect of pH, phosphate, and ADP on relaxation of myocardium after photolysis of diazo 2. Am. J. Physiol. Hear. Circ. Physiol. 275, 951–60.

    Google Scholar 

  • Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J., 2004. Multiscale computational modelling of the heart. Acta Numer. 13, 371–31.

    Article  MathSciNet  Google Scholar 

  • ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V., 2004. A model for human ventricular tissue. Am. J. Phys. Hear. Circ. Physiol. 286, 1573–589.

    Article  Google Scholar 

  • Whiteley, J.P., 2006. An efficient technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53, 2139–147.

    Article  Google Scholar 

  • Usyk, T.P., Mazhari, R., McCulloch, A.D., 2000. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61, 143–64.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Whiteley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, J.P., Bishop, M.J. & Gavaghan, D.J. Soft Tissue Modelling of Cardiac Fibres for Use in Coupled Mechano-Electric Simulations. Bull. Math. Biol. 69, 2199–2225 (2007). https://doi.org/10.1007/s11538-007-9213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9213-1

Keywords

Navigation