Skip to main content

Advertisement

Log in

Bayesian Inference for the Spatio-Temporal Invasion of Alien Species

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species’ distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaumont, M.A., Zhang, W., Balding, D.J., 2002. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035.

    Google Scholar 

  • Beerling, D.J., 1993. The impact of temperature on the northern distribution limits of the introduced species Fallopia japonica and Impatiens glandulifera in north-west Europe. J. Biogeogr. 20, 45–53.

    Article  Google Scholar 

  • Berger, J.O., 1985. Statistical Decision Theory and Bayesian Analysis, 2 edn. Springer, Berlin.

    MATH  Google Scholar 

  • Besag, J., 1978. Some methods of statistical analysis for spatial data. Bull. Int. Stat. Inst. 47, 77–92.

    Google Scholar 

  • Besag, J., 1986. On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. B 48, 259–302.

    MATH  Google Scholar 

  • Besag, J., Kooperberg, C., 1995. On conditional and intrinsic autoregressions. Biometrika 82, 733–746.

    MATH  Google Scholar 

  • Buckland, S.T., Elston, D.A., 1993. Empirical models for the spatial distribution of wildlife. J. Appl. Ecol. 30, 478–495.

    Article  Google Scholar 

  • Caffrey, J.M., 2001. The management of Giant Hogweed in an Irish river catchment. J. Aquatic Plant Manag. 39, 28–33.

    Google Scholar 

  • Campbell, G.S., Blackwell, P.G., Woodward, F.I., 2002. Can landscape-scale characteristics be used to predict plant invasions along rivers? J. Biogeogr. 29, 535–543.

    Article  Google Scholar 

  • Carlin, B.P., Louis, T.A., 2000. Bayes and Empirical Bayes Methods for Data Analysis, 2 edn. Chapman & Hall/CRC Press, London/Boca Raton.

    MATH  Google Scholar 

  • Clapham, A.R., Tutin, T.G., Moore, D.M., 1985. Flora of the British Isles, 3 edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clark, J.S., 2005. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14.

    Article  Google Scholar 

  • Collingham, Y.C., Hill, M.O., Huntley, B., 1996. The migration of sessile organisms: a simulation model with measurable parameters. J. Veg. Sci. 7, 831–846.

    Article  Google Scholar 

  • Collingham, Y.C., Wadsworth, R.A., Huntley, B., Hulme, P.E., 2000. Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J. Appl. Ecol. 37(Suppl. 1), 13–27.

    Article  Google Scholar 

  • Cook, A., 2006. Inference and prediction in plant populations using data augmentation within a Bayesian framework. Ph.D. thesis, Heriot-Watt University.

  • Cox, D.R., Isham, V., 1980. Point Processes. Monographs on Applied Probability and Statistics, vol. 12. Chapman & Hall, London.

    MATH  Google Scholar 

  • Fewster, R.M., 2003. A spatiotemporal stochastic process model for species spread. Biometrics 59, 640–649.

    Article  Google Scholar 

  • Gamerman, D., 1997. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 1 edn. Chapman & Hall, London.

    MATH  Google Scholar 

  • Gelfand, A.E., Schmidt, A.M., Wu, S., Silander, J.A.J., Latimer, A., Rebelo, A.G., 2005. Modelling species diversity through species level hierarchical modelling. J. Roy. Stat. Soc. C, 54, 1–20.

    Article  Google Scholar 

  • Geman, S., Bienenstock, E., Doursat, R., 1992. Neural networks and the bias/variance dilemma. Neural Comput. 4, 1–58.

    Google Scholar 

  • Gibson, G.J., 1997. Investigating mechanisms of spatiotemporal epidemic spread using stochastic models. Phytopathology, 87, 139–146.

    Article  Google Scholar 

  • Gibson, G., Otten, W., Filipe, J., Cook, A., Marion, G., Gilligan, C., 2006. Bayesian estimation for percolation models of disease spread in plant communities. Stat. Comput. 16, 391–402.

    Article  Google Scholar 

  • Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 1996. Introducing Markov Chain Monte Carlo. In Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice, pp. 1–19. Chapman & Hall, London.

    Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K., Dugaw, C., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B., Moore, K., Taylor, C., Thomson, D., 2005. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8, 91–101.

    Article  Google Scholar 

  • Heikkinen, J., Hogmander, H., 1994. Fully Bayesian approach to image restoration with application in biogeography. J. Roy. Stat. Soc. C, 43, 569–582.

    MATH  Google Scholar 

  • Hierro, J.L., Maron, J.L., Callaway, R.M., 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93, 5–15.

    Google Scholar 

  • Hitchcock, C., Sober, E., 2004. Prediction versus accommodation and the risk of overfitting. Br. J. Philos. Sci. 55, 1–34.

    Article  Google Scholar 

  • Höhle, M., Jørgensen, E., O’Neill, P.D., 2005. Inference in disease transmission experiments by using stochastic epidemic models. Appl. Stat. 54, 349–366.

    Google Scholar 

  • Huffer, F.W., Wu, H., 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics, 54, 509–524.

    Article  MATH  Google Scholar 

  • Kolar, C., Lodge, D., 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204.

    Article  Google Scholar 

  • Lagey, K., Duinslaeger, L., Vanderkelen, A., 1995. Burns induced by plants. Burns, 21, 542–543.

    Article  Google Scholar 

  • Lee, P.M., 2004. Bayesian Statistics: An Introduction, 3rd edn. Arnold, London.

    Google Scholar 

  • Mack, R.N., 1996. Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol. Conserv. 78, 107–121.

    Article  Google Scholar 

  • Manchester, S.J., Bullock, J.M., 2000. The impacts of non-native species on UK biodiversity and the effectiveness of control. J. Appl. Ecol. 37, 845–864.

    Article  Google Scholar 

  • Marion, G., Gibson, G.J., Renshaw, E., 2003. Estimating likelihoods for spatio-temporal models using importance sampling. Stat. Comput. 13, 111–119.

    Article  Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S., 2003. Markov chain Monte Carlo without likelihoods. Proc. Nat. Acad. Sci. 100, 15324–15328.

    Article  Google Scholar 

  • Mollison, D., Isham, V., Grenfell, B., 1994. Epidemics: models and data. J. Roy. Stat. Soc. A 157, 115–149.

    Article  Google Scholar 

  • Ord, J.K., 1975. Estimation methods for models of spatial interaction. J. Am. Stat. Assoc. 70, 120–126.

    Article  MATH  Google Scholar 

  • Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W., 1999. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16, 1791–1798.

    Google Scholar 

  • Pyšek, P., Pyšek, A., 1995. Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6, 711–718.

    Google Scholar 

  • Pyšek, P., Kopecký, M., Jarošík, V., Kotková, P., 1998. The role of human density and climate in the spread of Heracleum mantegazzianum in the Central European landscape. Divers. Distrib. 4, 9–16.

    Google Scholar 

  • Renshaw, E., 1991. Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Roberts, G.O., Gelman, A., Gilks, W.R., 1997. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120.

    Article  MATH  Google Scholar 

  • Sakai, A., Allendorf, F., Holt, J., Lodge, D., Molofsky, J., With, K., Baughman, S., Cabin, R., Cohen, J., Ellstrand, N., McCauley, D., O’Neill, P., Parker, I., Thompson, J., Weller, S., 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332.

    Article  Google Scholar 

  • Sala, O., Chapin, F., Armesto, J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L., Jackson, R., Kinzig, A., Leemans, R., Lodge, D., Mooney, H., Oesterheld, M., LeRoy Poff, N., Sykes, M., Walker, B., Walker, M., Wall, D., 2001. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.

    Article  Google Scholar 

  • Spiegelhalter, D.J., Thomas, A., Best, N.G., Lunn, D., 2003. Winbugs version 1.4 user manual, MRC Biostatistics Unit.

  • Stace, C., 1997. New flora of the British isles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P., 1997. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518.

    Google Scholar 

  • Tiley, G.E.D., Dodd, F.S., Wade, P.M., 1996. Biological fauna of the British Isles: Heracleum mantegazzianum Sommier & Levier. J. Ecol. 84, 297–319.

    Google Scholar 

  • Tompkins, D.M., White, A.R., Boots, M., 2003. Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196.

    Article  Google Scholar 

  • Willis, S.G., Hulme, P.E., 2002. Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK? Funct. Ecol. 16, 530–539.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, A., Marion, G., Butler, A. et al. Bayesian Inference for the Spatio-Temporal Invasion of Alien Species. Bull. Math. Biol. 69, 2005–2025 (2007). https://doi.org/10.1007/s11538-007-9202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9202-4

Keywords

Navigation