Skip to main content
Log in

A Model of Solute Transport through Stratum Corneum Using Solute Capture and Release

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A one-dimensional model of solute transport through the stratum corneum is presented. Solute is assumed to diffuse through lipid bi-layers surrounding impermeable corneocytes. Transverse diffusion (perpendicular to the skin surface) through lipids separating adjacent corneocytes, is modeled in the usual way. Longitudinal diffusion (parallel to the skin surface) through lipids between corneocyte layers, is modeled as temporary trapping of solute, with subsequent release in the transverse direction. This leads to a linear equation for one-dimensional transport in the transverse direction. The model involves an arbitrary function whose precise form is uncertain. For a specific choice of this function, closed form expressions for the Laplace transform of solute out-flux at the inner boundary, and for the time lag are obtained in the case that a constant solute concentration is maintained at the outer skin surface, with the inner boundary of the stratum corneum kept at zero concentration, and with the stratum corneum initially free of solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anissimov, Y.G., Roberts, M.S., 1999. Diffusion modeling of percutaneous absorption kinetics. 1. effects of flow rate, receptor sampling rate, and viable epidermal resistance for a constant donor concentration. J. Pharm. Sci. 88(11), 1201–1209, November.

    Article  Google Scholar 

  • Anissimov, Y.G., Roberts, M.S., 2001. Diffusion modeling of percutaneous absorption kinetics: 2. finite vehicle volume and solvent deposited solids. J. Pharm. Sci. 90(4), 504–520, April.

    Article  Google Scholar 

  • Barrier, R.M., 1941. Diffusion in and through Solids. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bass, L., Bracken, A.J., Hilden, J., 1986. Flux ratio theorems for nonstationary membrane transport with temporary capture of tracer. J. Theor. Biol. 118, 327–338.

    Article  Google Scholar 

  • Crank, J., 1975. The Mathematics of Diffusion, 2nd edn. Oxford University Press, London.

    Google Scholar 

  • Cussler, E.L., 1997. Diffusion Mass Transfer in Fluid Systems, 2nd edn. Cambridge University Press, London.

    Google Scholar 

  • Cussler, E.L., Hughes, E.S., Ward, W.J., Aris, R., 1988. Barrier membranes. J. Membr. Sci. 38, 161–174.

    Article  Google Scholar 

  • Frasch, F.H., 2002. A random walk model of skin permeation. Risk Anal. 22(2), 265–276.

    Article  Google Scholar 

  • Frasch, H.F., Barbero, A.M., 2003. Steady-state flux and lag time in the stratum corneum lipid pathways: Results from finite element models. J. Pharm. Sci. 92(11), 2196–2207, November.

    Article  Google Scholar 

  • Guy, R.H., Hadgraft, J. (Eds.) 2003. Transdermal Drug Delivery, 2nd edn. Drugs and the Pharmaceutical Sciences, vol. 123. Dekker, New York.

    Google Scholar 

  • Hadgraft, J., 2001. Skin, the final frontier. Int. J. Pham. 224, 1–18.

    Article  Google Scholar 

  • Heisig, M., Lieckfeldt, R., Wittum, G., Mazurkevich, G., Lee, G., 1996. Non steady-state descriptions of drug permeation through stratum corneum. i. the biphasic brick-and-mortar model. Pharm. Res. 13(3), 421–426.

    Article  Google Scholar 

  • Hosono, T., 1981. Numerical inversion of Laplace transform and some applications to wave optics. Radio Sci. 16(6), 1015–1019, November–December.

    Google Scholar 

  • Johnson, M.E., Blankschtein, D., Langer, R., 1997. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86(10), 1162–1172, October.

    Article  Google Scholar 

  • Kalia, Y.N., Guy, R.H., 2001. Modeling transdermal drug release. Adv. Drug Deliv. Revi. 48, 159–172.

    Article  Google Scholar 

  • Lange-Lieckfeldt, R., Lee, G., 1992. Use of a model lipid matrix to demonstrate the dependence of the stratum corneum’s barrier properties on its internal geometry. J. Controll. Release 20, 183–194.

    Article  Google Scholar 

  • Longer, A.M., Middleton, L.D., Robinson, R.J., 1988. Conventional routes of delivery and the need for devices. In: Drug Delivery Devices; Fundamentals and Applications, pp. 3–15. Dekker, New York.

    Google Scholar 

  • Magnus, W., Oberhettinger, F., 1949. Formulas and Theorems for the Functions of Mathematical Physics. Chelsea, New York.

    MATH  Google Scholar 

  • Michaels, A.S., Chandrasekaran, S.K., Shaw, J.E., 1975. Drug permeation through human skin in vitro; experimental measurement. IChE J. 21(5), 985–996, September.

    Google Scholar 

  • Moghimi, H.R., Williams, A.C., Barry, B.W., 1996. A lamellar matrix model for stratum corneum intercellular lipids. ii. effect of geometry of the stratum corneum on permeation of model drugs 5-fluorouracil and oestradiol. Int. J. Pharm. 131, 117–129.

    Article  Google Scholar 

  • Packer, K., Sellwood, T., 1978. Proton magnetic resonance studies of hydrated stratum corneum. J. Chem. Soc. Faraday Trans. 2, 1592–1606.

    Google Scholar 

  • Perry, D., Ward, W.J., Cussler, E.L., 1989. Unsteady diffusion in barrier membranes. J. Membr. Sci. 44, 305–311.

    Article  Google Scholar 

  • Rademacher, H., 1973. Topics in Analytic Number Theory. Springer, Berlin.

    MATH  Google Scholar 

  • Roberts, M.S., Anissimov, Y.G., Gonsalvez, R.A., 1999. Mathematical models in percutaneous absorption. In: Percutaneous Absorption; Drugs-Cosmetics-Mechanisms-Methodology, 3rd edn., pp. 3–55. Dekker, New York.

    Google Scholar 

  • Schaefer, H., Redelmeier, T.E., 1996. Karger. In: Skin Barrier; Principles of Percutaneous Absorption, Chap. 1.

  • Sommerfeld, A., 1949. Partial Differential Equations in Physics. Lectures on Theoretical Physics, vol. VI, pp. 63–83. Academic, San Diego, Chap. 3.

    Google Scholar 

  • Tojo, K., 1987. Random brick model for drug transport across stratum corneum. J. Pharm. Sci. 76(12), 889–991, December.

    Google Scholar 

  • Tojo, K., Chien, Y.W., 1986. Dynamics of transdermal drug delivery. Proceedings of the 13th International Symposium on Controlled Release of Bioactive Materials, pp. 59–60.

  • Wakao, N., Smith, J.M., 1962. Diffusion in catalyst pellets. Chem. Eng. Sci. 17, 825–834.

    Article  Google Scholar 

  • Wax, N. (Ed.), 1954. Stochastic problems in physics and astronomy. In: Selected Papers on Noise and Stochastic Processes, pp. 3–91. Dover, New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Mollee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollee, T.R., Bracken, A.J. A Model of Solute Transport through Stratum Corneum Using Solute Capture and Release. Bull. Math. Biol. 69, 1887–1907 (2007). https://doi.org/10.1007/s11538-007-9197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9197-x

Keywords

Navigation