Skip to main content

Advertisement

Log in

Macrophage-Based Anti-Cancer Therapy: Modelling Different Modes of Tumour Targeting

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Tumour hypoxia is associated with poor drug delivery and low rates of cell proliferation, factors that limit the efficacy of therapies that target proliferating cells. Since macrophages localise within hypoxic regions, a promising way to target hypoxic tumour cells involves engineering macrophages to express therapeutic genes under hypoxia. In this paper we develop mathematical models to compare the responses of avascular tumour spheroids to two modes of action: either the macrophages deliver an enzyme that activates an externally applied prodrug (bystander model), or they deliver cytotoxic factors directly (local model). The models we develop comprise partial differential equations for a multiphase mixture of tumour cells, macrophages and extracellular fluid, coupled to a moving boundary representing the spheroid surface. Chemical constituents, such as oxygen and drugs, diffuse within the multiphase mixture. Simulations of both models show the spheroid evolving to an equilibrium or to a travelling wave (multiple stable solutions are also possible). We uncover the parameter dependence of the wave speed and steady-state tumour size, and bifurcations between these solution forms. For some parameter sets, adding extra macrophages has a counterintuitive deleterious effect, triggering a bifurcation from bounded to unbounded tumour growth. While these features are common to the bystander and local models, the crucial difference is where cell death occurs. The bystander model is comparable to traditional chemotherapy, with poor targeting of hypoxic tumour cells; however, the local mode of action is more selective for hypoxic regions. We conclude that effective targeting of hypoxic tumour cells may require the use of drugs with limited mobility or whose action does not depend on cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J.A., Bellomo, N., 1997. A Survey of Models for Tumor-Immune System Dynamics. Birkhäuser, Cambridge, MA.

    MATH  Google Scholar 

  • Andreesen, R., Hennemann, B., Krause, S.W., 1998. Adoptive immunotherapy of cancer using monocyte-derived macrophages: Rationale, current status, and perspectives. J. Leukoc. Biol. 64, 419–426.

    Google Scholar 

  • Bingle, L., Brown, N.J., Lewis, C.E., 2002. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J. Pathol. 196, 254–265.

    Article  Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lewis, C.E., 2001. Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. Eur. J. Appl. Math. 12, 529–556.

    Article  MATH  MathSciNet  Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lewis, C.E., 2003. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640.

    Article  Google Scholar 

  • Brown, J.M., 1999. The hypoxic cell: A target for selective cancer therapy—Eighteenth Bruce F Cain Memorial Award lecture. Cancer Res. 59, 5863–5870.

    Google Scholar 

  • Byrne, H.M., Cox, S.M., Kelly, C.E., 2004. Macrophage-tumour interactions in vivo. Discrete Contin. Dyn. Syst., Ser. B 4, 81–98.

    MATH  MathSciNet  Google Scholar 

  • Byrne, H.M., Alarcón, T., Owen, M.R., Webb, S.D., Maini, P.K., 2006. Modelling aspects of cancer dynamics: A review. Philos. Trans. R. Soc. A 364, 1563–1578.

    Article  Google Scholar 

  • Cersosimo, R.J., 2003. Tamoxifen for prevention of breast cancer. Ann. Pharmacother. 37, 268–273.

    Article  Google Scholar 

  • Crowther, M., Brown, N.J., Bishop, E.T., Lewis, C.E., 2001. Microenvironmental influence of macrophage regulation of angiogenesis in wounds and malignant tumours. J. Leukoc. Biol. 70, 478–490.

    Google Scholar 

  • Dent, P., Grant, S., 2004. Irofulven: resurgence for alkylating therapy in cancer. Cancer Biol. Ther. 3, 1143–1144.

    Article  Google Scholar 

  • Doedel, E.J., Champneys, A.R., Fairgrieve, T.R., Kuznetsov, Y.A., Sandstede, B., Wang, X.J., 1997. AUTO 97: Continuation and bifurcation software for ordinary differential equations. Available from http://indy.cs.concordia.ca/auto/main.html.

  • Drasdo, D., Hohme, S., 2003. Individual-based approaches to birth and death in avascular tumors. Math. Comput. Modelling 37, 1163–1175.

    Article  MATH  Google Scholar 

  • Freyer, J.P., Sutherland, R.M., 1983. Determination of apparent diffusion constants for metabolites in multicell tumour spheroids. Adv. Exp. Med. Biol. 159, 463–475.

    Google Scholar 

  • Gatenby, R.A., 1995. The potential role of transformation-induced changes in tumor-host interface. Cancer Res. 55, 4151–4156.

    Google Scholar 

  • Griffiths, L., Binley, K., Iqball, S., Kan, O., Maxwell, P., Ratcliffe, P., Lewis, C., Harris, A., Kingsman, S., Naylor, S., 2000. The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 7, 255–262.

    Article  Google Scholar 

  • Gunther, M., Waxman, D.J., Wagner, E., Ogris, M., 2006. Effects of hypoxia and limited diffusion in tumor cell microenvironment on bystander effect of P450 prodrug therapy. Cancer Gene Ther. 13, 771–779.

    Google Scholar 

  • Hibbs, J.B., Taintor, R.R., Vavrin, Z., Rachlin, E.M., 1988. Nitric-oxide—A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94.

    Article  Google Scholar 

  • Hlatky, L., Suchs, R.K., Alpen, E.L., 1988. Joint oxygen-glucose deprivation as the cause of necrosis in a tumour analogue. J. Cell. Physiol. 134, 167–178.

    Article  Google Scholar 

  • Kelly, P.M., Davison, R.S., Bliss, E., McGee, J.O., 1988. Macrophages in human breast disease: A quantitative immunohistochemical study. Br. J. Cancer 57, 174–177.

    Google Scholar 

  • Kelly, C.E., Leek, R.D., Byrne, H.M., Cox, S.M., Harris, A.L., Lewis, C.E., 2002. Modelling macrophage infiltration into avascular tumours. J. Theor. Med. 4, 21–38.

    Article  MATH  Google Scholar 

  • Leek, R.D., 1999. The Role of Tumour Associated Macrophages in Breast Cancer Angiogenesis. PhD thesis, Oxford Brookes University, Oxford.

  • Leek, R.D., Harris, A.L., Lewis, C.E., 1994. Cytokine networks in solid human tumours: Regulation of angigenesis. J. Leukoc. Biol. 56, 423–435.

    Google Scholar 

  • Leek, R.D., Lewis, C.E., Whitehouse, R., Greenall, M., Clarke, J., Harris, A.L., 1996. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629.

    Google Scholar 

  • Leek, R.D., Landers, R.J., Harris, A.L., Lewis, C.E., 1999. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br. J. Cancer 79, 991–995.

    Article  Google Scholar 

  • Lewis, C.E., Murdoch, C., 2005. Macrophage responses to hypoxia: implications for tumor progession and anti-cancer therapies. Am. J. Pathol. 167, 627–635.

    Google Scholar 

  • Mantzaris, N., Webb, S.D., Othmer, H.G., 2004. Mathematical modelling of tumour angiogenesis: A review. J. Math. Biol. 49, 111–187.

    Article  MATH  MathSciNet  Google Scholar 

  • Maxwell, P.H., Dachs, G.U., Gleadle, J.M., Nicholls, L.G., Harris, A.L., Stratford, I.J., Hankinson, O., Pugh, C.W., Ratcliffe, P.J., 1997. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 94, 8104–8109.

    Article  Google Scholar 

  • Murdoch, C., Giannoudis, A., Lewis, C.E., 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234.

    Article  Google Scholar 

  • Negus, R.P., Stamp, G.W., Hadley, J., Balkwill, F.R., 1997. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol. 150, 1723–1734.

    Google Scholar 

  • Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., Kohchi, C., Soma, G.I., Inoue, M., 2004. Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res. 24, 3335–3342.

    Google Scholar 

  • O'Shaughnessy, J.A., 2004. New perspectives with antimetabolites in the management of breast cancer. Clin. Breast Cancer 4, S99–S100.

    Article  Google Scholar 

  • Owen, M.R., Sherratt, J.A., 1997. Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. Theor. Biol. 189, 63–80.

    Article  Google Scholar 

  • Owen, M.R., Sherratt, J.A., 1998. Modelling the macrophage invasion of tumours: Effects on growth and composition. IMA J. Math. Appl. Med. Biol. 15, 165–185.

    Article  MATH  Google Scholar 

  • Owen, M.R., Byrne, H.M., Lewis, C.E., 2004. Mathematical modelling of the use of macrophages as vehicles for drug-delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391.

    Article  MathSciNet  Google Scholar 

  • Perumpanani, A.J., Byrne, H.M., 1999. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35, 1274–1280.

    Article  Google Scholar 

  • Pollard, J.W., 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78.

    Article  Google Scholar 

  • Ross, J.A., Auger, M.J., 2002. The biology of the macrophage. In: Burke, B., Lewis, C.E. (Eds.), The Macrophage, 2nd edition. Oxford University Press, Oxford, 1–72

  • Sica, A., Saccani, A., Bottazi, B., Polentarutti, N., Vecchi, A., van Damme, J., Mantovani, A., 2000. Autocrine production of IL-10 mediates defective IL-12 production and NF-κ B activation in tumor-associated macrophages. J. Immunol. 164, 762–767.

    Google Scholar 

  • Sica, A., Sacccani, A., Mantovani, A., 2002. Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045–1054.

    Article  Google Scholar 

  • Siegert, A., Denkert, C., Leclere, A., Hauptmann, S., 1999. Suppression of the reactive oxygen intermediates production of human macrophages by colorectal adenocarcinoma cell lines. Immunology 98, 551–556.

    Article  Google Scholar 

  • Sozzani, S., Luini, W., Molino, M., Jilek, P., Bottazzi, B., Cerletti, C., Matsushima, K., Mantovani, A., 1991. The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J. Immunol. 147, 2215–2221.

    Google Scholar 

  • Trinchieri, G., 1998. Interleukin-12: A cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83–243.

    Article  Google Scholar 

  • Urban, J.L., Shepard, H.M., Rothstein, J.L., Sugarman, B.J., Schreiber, H., 1986. Tumor-necrosis-factor—A potent effector molecule for tumor-cell killing by activated macrophages. Proc. Nat. Acad. Sci. USA 83, 5233–5237.

    Article  Google Scholar 

  • Vaupel, P., Kelleher, D.K., Hockel, M., 2001. Oxygen status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 28, 29–35.

    Article  Google Scholar 

  • Ward, J.P., King, J.R., 1997. Mathematical modelling of avascular tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69.

    Article  MATH  Google Scholar 

  • Ward, J.P., King, J.R., 1999a. Mathematical modelling of avascular tumour growth II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211.

    Article  MATH  Google Scholar 

  • Ward, J.P., King, J.R., 1999b. Mathematical modelling of the effects of mitotic inhibitors on avascular tumour growth. J. Theor. Med. 1, 287–311.

    MATH  Google Scholar 

  • Ward, J.P., King, J.R., 2003. Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math. Biosci. 181, 177–207.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus R. Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, S.D., Owen, M.R., Byrne, H.M. et al. Macrophage-Based Anti-Cancer Therapy: Modelling Different Modes of Tumour Targeting. Bull. Math. Biol. 69, 1747–1776 (2007). https://doi.org/10.1007/s11538-006-9189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9189-2

Keywords

Navigation