Skip to main content

Advertisement

Log in

Modeling Stochasticity in Gene Regulation: Characterization in the Terms of the Underlying Distribution Function

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Intrinsic stochasticity plays an essential role in gene regulation because of a small number of involved molecules of DNA, mRNA and protein of a given species. To better understand this phenomenon, small gene regulatory systems are mathematically modeled as systems of coupled chemical reactions, but the existing exact description utilizing a Chapman–Kolmogorov equation or simulation algorithms is limited and inefficient. The present work considers a much more efficient yet accurate modeling approach, which allows analyzing stochasticity in the system in the terms of the underlying distribution function. We depart from the analysis of a single gene regulatory module to find that the mRNA and protein variance is decomposable into additive terms resulting from respective sources of stochasticity. This variance decomposition is asserted by constructing two approximations to the exact stochastic description: First, the continuous approximation, which considers only the stochasticity due to the intermittent gene activity. Second, the mixed approximation, which in addition attributes stochasticity to the mRNA transcription/decay process. Considered approximations yield systems of first order partial differential equations for the underlying distribution function, which can be efficiently solved using developed numerical methods. Single cell simulations and numerical two-dimensional mRNA–protein stationary distribution functions are presented to confirm accuracy of approximating models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackers, G.K., Johnsson, D., Shea, M., 1982. Quantitative model for gene regulation by phage λ repressor. PNAS 79, 1129–1133.

    Article  Google Scholar 

  • Arkin, A., Ross, J., McAdams, H.H., 1998. Stochastic kinetic analysis of develometal pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633–1648.

    Google Scholar 

  • Barken, D., Wang, C.J., Kærns, J., Cheong, R., Hoffman, A., Levchenko, A., 2005. Comment on “Oscillations in NF-κB signaling control the dynamics of gene expression.” Science 308, 52a.

    Article  Google Scholar 

  • Blake, W.J., Kærn, M., Cantor, C.R., Collins, J.J., 2003. Noise in eukaryotic gene expression. Nature 422, 633–637.

    Article  Google Scholar 

  • Bobrowski, A., 2006. Degenerate convergence of semigroups related to a model of stochastic gene expression. Semigroup forum, in press.

  • Cook, D.L., Gerber, A.N., Tapscott, S.J., 1998. Modeling stochastic gene expression: Implications for haplosufficiency. PNAS 95, 15641–15646.

    Article  Google Scholar 

  • Femino, A.M., Fay, F.S., Fogarty, K., Singer, R.H., 1998. Visualization of single RNA transcripts in situ. Science 280, 585–590.

    Article  Google Scholar 

  • Gardiner, C.W., 2003. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, New York.

    Google Scholar 

  • Gillespie, D.T., 1976. A general method for numerically simulating the stochatic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Gygi, S.P., Rochon, Y.B., Franza, R., Aebersold, R., 2003. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.

    Google Scholar 

  • Hat, B., Paszek, P., Piechor, K., Kimmel, M., Lipniacki, T., 2006. How number of alles influences gene expression. J. Stat. Phys., under revision.

  • Kierzek, A.M., Zaim, J., Zilemnikiewicz, P., 2001. The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression, J. Biol. Chem. 276, 8165–8172.

    Article  Google Scholar 

  • Kepler, T.B., Elston, T.C., 2001. Stochasticity in transcriptional regulation: Orgins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136.

    Google Scholar 

  • Ko, M.S.H., 1991. A stochastic model for gene induction. J. Theor. Biol. 153, 181–194.

    Article  Google Scholar 

  • Ko, M.S.H., 1992. Induction mechanism of a single gene molecule: Stochastic or deterministic? Bioassays 14, 341–346.

    Article  Google Scholar 

  • Lipniacki, T., Paszek, P., Brasier, A.R., Luxon, B., Kimmel, M., 2004. Mathematical model of NF-κB module. J. Theor. Biol. 228, 195–215.

    Article  MathSciNet  Google Scholar 

  • Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier, A.R., Kimmel, M., 2006a. Transcriptional stochasticity in gene expression. J. Theor. Biol. 238, 348–367.

    Article  MathSciNet  Google Scholar 

  • Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., Kimmel, M., 2006b. Stochastic regulation in early immune response. Biophys. J. 90, 725–742.

    Article  Google Scholar 

  • Louis, M., Holm, L., Sanchez, L., Kaufman, M., 2003. A theoretical model for the regulation of sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila melanogaster. Genetics 165, 1355–1384.

    Google Scholar 

  • McAdams, H.H., Shapiro, L., 1995. Circuit simulation of genetic networks. Science 269, 650–656.

    Article  Google Scholar 

  • McAdams, H.H., Arkin, A., 1997. Stochastic mechanisms in gene expression. PNAS 94, 814–819.

    Article  Google Scholar 

  • McKane, A.J., Newman, T.J., 2005. Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94, 218101.

    Article  Google Scholar 

  • Nelson, D.E., Ihekwaba, A.E.C., Elliot, M., Johnson, J.R., Gibney, C.A., Foreman, B.E., Nelson, G., See, V., Horton, C.A., Spiller, D.G., Edwards, S.W., McDowell, H.P., Unitt, J.F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D.B., White, M.R.H., 2004. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708.

    Article  Google Scholar 

  • Nelson, D.E., Horton, C.A., See, V., Johnson, J.R., Nelson, G., Spiller, D.G., Kell, D.B., White, M.R.H., 2005. Response to comment on “Oscillations in NF-κB signaling control the dynamics of gene expression.” Science 308, 52b.

    Article  Google Scholar 

  • Paszek, P., Lipniacki, T., Brasier, A.R., Tian, B., Nowak, D.E., Kimmel, M., 2005. Stochastic effects of multiple regulators on expression profiles in eukaryotes. J. Theor. Biol. 233, 423–433.

    Article  MathSciNet  Google Scholar 

  • Paulsson, J., 2004. Summing up noise in gene networks. Nature 427, 415–418.

    Article  Google Scholar 

  • Percus, J.K., 2005. Small population effects in stochastic population dynamics. Bull. Math. Biol. 67, 1173–1194.

    Article  MathSciNet  Google Scholar 

  • Pirone, J.R., Elston, T.C., 2004. Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J. Theor. Biol. 226, 111–121.

    Article  MathSciNet  Google Scholar 

  • Raser, J.M., O'Shea, E.K., 2004. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814.

    Article  Google Scholar 

  • Simpson, M.L., Cox, C.D., Sayler, G.S., 2004. Frequency domain chemical Langevin analysis of stochasticity in gene transcriptional regulation. J. Theor. Biol. 229, 383–394.

    Article  Google Scholar 

  • Stirland, J.A., Seymour, Z.C., Windeatt, S., Norris, A.J., Stanley, P., Castro, M.G., Loudon, A.S.I., White, M.R.H., Davis, J.R.E., 2003. Real-time imaging of gene promoter activity using an adenoviral reporter construct demonstrates transcriptional dynamics in normal anterior pituary cells. J. Endocrinol. 178, 61–69.

    Article  Google Scholar 

  • Takasuka, N., White, M.R.H., Wood, C.D., Robertson, W.R., Davis, J.R.E., 1998. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology 139, 1361–1368.

    Article  Google Scholar 

  • Tao, Y., 2004. Intrinsic and external noise in an auto-regulatory genetic network. J. Theor. Biol. 229, 147–156.

    Article  Google Scholar 

  • Tao, Y., 2004b. Intrinsic noise, gene regulation and steady-state statistics in a two gene network. J. Theor. Biol. 231, 563–568.

    Article  Google Scholar 

  • Thattai, M., Oudenaarden, A., 2001. Intrinsic noise in gene regulatory networks. PNAS 98, 8614–8619.

    Article  Google Scholar 

  • Tomioka, R., Kimura, H., Kobayashi, T., Aihira, K., 2004. Multivariate analysis of noise in genetic regulatory networks. J. Theor. Biol. 229, 501–521.

    Article  Google Scholar 

  • Washburn, M.P., Koller, A., Oshiro, G., Ulaszek, R.R., Plouffe, D., Deciu, C., Winzeler, E., Yates, J.R., III, 2003. Protein pathway and comlex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. PNAS 100, 3107–3112.

    Article  Google Scholar 

  • White, R.J., 2001. Gene Transcription: Mechanisms and Control. Blackwell Science Ltd., Oxford, UK.

    Google Scholar 

  • Van Kampen, N.G., 2004. Stochastic Processes in Physics and Chemistry. North-Holland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Paszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paszek, P. Modeling Stochasticity in Gene Regulation: Characterization in the Terms of the Underlying Distribution Function. Bull. Math. Biol. 69, 1567–1601 (2007). https://doi.org/10.1007/s11538-006-9176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9176-7

Keywords

Navigation