Skip to main content
Log in

Energetically Plausible Model of a Self-Maintaining Protocellular System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Most of the models for cellular origin stress one of these two approaches: “replication-first” or “metabolism-first.” The model presented here focuses on the latter, consisting of the combination of kinetic and energetic descriptions of protocellular metabolism. In this model, the membrane plays a very crucial role in the maintenance of the cell and the osmotic stability. The model contains the following elements: structural membrane elements (Lm), transducers (T), molecules (E) that combine enzyme-like activity with the transport of elements through the membrane, energy-rich molecules (A), precursors of each type of molecule (l, t, e, and a, respectively), and an impermeable substance (x). Different kinetic parameters lead to a wide region of stable steady states, as studied through numerical analysis. The system presents stability under different external conditions. Two energy source regimes have been studied: periodic and nonperiodic. The kinetic restrictions that lead to osmotic stability are also addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anet, F.A.L. (2004). The place of metabolism in the origin of life. Curr. Opin. Chem. Biol. 8, 654–659.

    Article  Google Scholar 

  • Atkins, P.W. (1984). The Second Law. Freeman, New York.

    Google Scholar 

  • Bachmann, P.A., et al. (1992). Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357(May 7), 57–58.

    Article  Google Scholar 

  • Berry, S. (2002). The chemical basis of membrane bioenergetics. J. Mol. Evol. 54, 595–613.

    Article  Google Scholar 

  • Bro, P. (1997). Chemical reaction automata. Complexity 2(3), 38–44.

    Article  Google Scholar 

  • Chen, I., et al. (2004a). The emergence of competition between model protocells. Science (305), 1474–1476.

  • Chen, I., et al. (2004b). Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. PNAS 101(21), 7965–7970.

    Article  Google Scholar 

  • Deamer, D. (1997). The first living systems: A bioenergetic perspective. Microbiol. Mol. Biol. Rev. 61, 239–261.

    Google Scholar 

  • Deamer, D., et al. (2002). The first cell membranes. Astrobiology 2(4), 371–381.

    Article  Google Scholar 

  • de Duve, C. (1991). Blueprint for a Cell: The Nature and Origin of Life. Neil Paterson, Burlington, NC.

    Google Scholar 

  • Dworkin, J.P., et al. (2001). Self-assembilng amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. PNAS 98(3), 815–819.

    Article  Google Scholar 

  • Dyson, F. (1985). Origins of Life, 2nd edn. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Farmer, J.D., et al. (1986). Autocatalytic replication of polymers. Physica D 22, 50–67.

    Article  MathSciNet  Google Scholar 

  • Fleischaker, G.R., et al. (Eds.) (1994). Self-Production of Supramolecular Structures: From Synthetic Structures to Models of Minimal Living Systems. Kluwer Academic, New York.

  • Fontana, W. (1992). Algorithmic chemistry. In: C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen (Eds.), Artificial Life II. Addison-Wesley, Redwood City, CA, pp. 159–209

  • Gánti, T. (2003a). Chemoton Theory, vol. 1., Theoretical Foundations of Fluid Machineries. Kluwer Academic/Plenum, New York.

  • Gánti, T. (2003b). Chemoton Theory, vol. 2, Theory of Living Systems. Kluwer Academic/Plenum, New York.

  • Hanczyc, M., et al. (2004). Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8(6), 660–664.

    Article  Google Scholar 

  • Harold, F.M. (1986). The Vital Force: A Study of bioenergetics. Freeman, New York.

    Google Scholar 

  • Harold, F.M. (2001). The Way of the Cell: Molecules, Organisms and the Order of LIfe. Oxford University Press, Oxford.

    Google Scholar 

  • Kauffman, S. (2000). Investigations. Oxford University Press, Oxford.

    Google Scholar 

  • Koch, A.L. (1985). Primeval cells: Possible energy-generating and cell division mechanisms. J. Mol. Evol. 21, 270–277.

    Article  Google Scholar 

  • Koch, A.L., et al. (1991). The first celluylar bioenergetic process: Primitive generation of a proton motive force. J. Mol. Evol. 33, 297–304.

    Article  Google Scholar 

  • Koch, L.A. (1985). Primeval cells: Possible energy-generating and cell-division mechanisms. J. Mol. Evol. 21, 270–277.

    Article  Google Scholar 

  • Lorsch, J.R., et al. (1996). Chance and necessity in the selection of nucleic acid catalyst. Acc. Chem. Res. 29, 103–110.

    Article  Google Scholar 

  • Luisi, P.L., et al. (2006). Approaches to semisynthetic minimal cells: A review. Naturwissenschaften 93, 1–13.

    Article  Google Scholar 

  • McMullin, B. (1997). SCL: An artificial chemistry in swarm. In: SFI Working Paper. Santa Fe Institute, Santa Fe, NM.

  • Mitchell, P. (1961). Coupling of phoshorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 48–52.

    Article  Google Scholar 

  • Morigaki, K., et al. (1997). Autopoietic self-reproduction of chiral fatty acid vesicles. J. Am. Chem. Soc. 119(2), 292–301.

    Article  Google Scholar 

  • Morowitz, H.J. (1981). Phase separation, charge separation and biogenesis. Biosystems 14, 41–47.

    Article  Google Scholar 

  • Morowitz, H.J., et al. (1988). The chemical logic of a minimum protocell. Orig. Life Evol. Biosph. 18, 281–287.

    Article  Google Scholar 

  • Nowick, J.S., et al. (1994). Molecular recognition in micelles. In: G.R. Fleischaker, S. Colonna and P.L. Luisi (Eds.), Self-Production of Supramolecular Structures. Kluwer Academic, New York, pp. 199–207.

  • Oró, J., et al. (1984). A minimal living system and the origin of a protocell. Adv. Space Res. 4, 167–176.

    Article  Google Scholar 

  • Pfeiffer, T., et al. (1999). METATOOL: For studying metabolic networks. Bioinformatics 15(3), 251–257.

    Article  MathSciNet  Google Scholar 

  • Pohorille, A., et al. (1996). Molecular modeling of protocellular functions. In: L. Hunter and T.E. Klein (Eds.), Pacific Symposium on Biocomputing. World Scientific, Singapore, pp. 550–569.

  • Pross, A. (2004). Causation and the origin of life. Metabolism or replication first? Orig. Life. Evol. Biosph. 34, 307–321.

    Article  Google Scholar 

  • Rasmussen, S., et al. (2000). Dynamics and simulation of micellar self-reproduction. Int. J. Mod. Phys. 11(4), 809–826.

    Article  Google Scholar 

  • Rosen, R. (1971). Some realizations of (M.R)-systems and their interpretation. Bull. Math. Biophys. 33, 303–319.

    Article  MATH  Google Scholar 

  • Rosen, R. (1973). On the dynamical realizations of (M,R)-systems. Bull. Math. Biophys. 35, 1–9.

    MATH  Google Scholar 

  • Ruiz-Mirazo, K., et al. (1998). Merging the energetic and the relational-constructive logic of life. In: C. Adami, R. Belew, H. Kitano, and C. Taylor (Eds.), Artificial Life IV. Proceedings. MIT/Bradford Books, Cambridge, Mass., pp. 448–451.

  • Ruiz-Mirazo, K., et al. (2004). Basic autonomy as a fundamental step in the synthesis of Life. Artif. Life J. 10(3), 235–260.

    Article  Google Scholar 

  • Segré, D., et al. (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. PNAS 97(8), 4112–4117.

    Article  Google Scholar 

  • Segré, D., et al. (2001). The lipid world. Orig. Life Evol. Biosph. 31, 119–145.

    Article  Google Scholar 

  • Skulachev, V.P. (1992). The laws of cell energetic. Eur. J. Biochem 208, 203–209.

    Article  Google Scholar 

  • Varela, F., et al. (1974). Autopoiesis: The organization of living systems, its characterization and a model. BioSystems 5(4), 187–196.

    Article  Google Scholar 

  • Wächtershäuser, G. (1988). Before enzymes and templates: Theory of surface metabolism. Microbiol. Rev. 52(4), 452–484.

    Google Scholar 

  • Wick, R., et al. (1994). Giant vesicles. In: G.R.F. et al. (Eds), Self-Production of Supramolecular Structures. Kluwer Academic, Dordrecht, The Netherlands, pp. 295–299.

  • Wicken, J.S. (1987). Evolution, thermodynamics and information. Extending the Darwinian program. Oxford University Press, Oxford.

    Google Scholar 

  • Yamagata, Y., et al. (1991). Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352, 516–519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olasagasti, F., Moreno, A., Peretó, J. et al. Energetically Plausible Model of a Self-Maintaining Protocellular System. Bull. Math. Biol. 69, 1423–1445 (2007). https://doi.org/10.1007/s11538-006-9171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9171-z

Keywords

Navigation