Skip to main content
Log in

Stochastic Fluctuations Through Intrinsic Noise in Evolutionary Game Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A one-step (birth–death) process is used to investigate stochastic noise in an elementary two-phenotype evolutionary game model based on a payoff matrix. In this model, we assume that the population size is finite but not fixed and that all individuals have, in addition to the frequency-dependent fitness given by the evolutionary game, the same background fitness that decreases linearly in the total population size. Although this assumption guarantees population extinction is a globally attracting absorbing barrier of the Markov process, sample trajectories do not illustrate this result even for relatively small carrying capacities. Instead, the observed persistent transient behavior can be analyzed using the steady-state statistics (i.e., mean and variance) of a stochastic model for intrinsic noise that assumes the population does not go extinct. It is shown that there is good agreement between the theory of these statistics and the simulation results. Furthermore, the ESS of the evolutionary game can be used to predict the mean steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bharucha-Reid, A.T., 1960. Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Broom, M., 2005. Evolutionary games with variable payoffs. Comp. Rendus Biol. 328, 403–412.

    Article  Google Scholar 

  • Cressman, R., 1992. The Stability Concept of Evolutionary Game Theory. Springer-Verlag, Heidelberg, New York.

    MATH  Google Scholar 

  • Ficici, S., Pollack, J., 2000. Effects of finite populations on evolutionary stable strategy. In: Darrell Whitley, L. (Ed.), Proceedings of the 2000 Genetic and Evolutionary Computation Conference. Morgan-Kaufmann, San Francisco, pp. 927–934.

  • Fogel, G., Fogel, D., Andrews, P., 1997. On the instability of evolutionary stable strategies. Biosystems 44, 135–152.

    Article  Google Scholar 

  • Fogel, G., Andrews, P., Fogel, D., 1998. On the instability of evolutionary stable strategies in small populations. Ecol. Model. 109, 283–294.

    Article  Google Scholar 

  • Foster, D., Young, P., 1990. Stochastic evolutionary game dynamics. J. Theor. Biol. 38, 219–232.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 25, 2340–2361.

    Article  Google Scholar 

  • Hastings, A., 2004. Transients: The key to long-term ecological understanding. TREE 19, 39–45.

    Google Scholar 

  • Hofbauer, J., Sigmund, K., 1998. The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hofbauer, J., Sigmund, K., 2003. Evolutionary game dynamics. Bull. Am. Math. Soc. 40, 479–519.

    Article  MATH  MathSciNet  Google Scholar 

  • Kandori, M., Mailath, G.J., Rob, R., 1993. Learning, mutation, and long-run equilibria in games. Econometrica 61, 29–56.

    Article  MATH  MathSciNet  Google Scholar 

  • Lessard, S., 1984. Evolutionary dynamics in frequency-dependent two-phenotype models. Theor. Pop. Biol. 25, 210–234.

    Article  MATH  Google Scholar 

  • Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Moran, P.A.P., 1962. The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Nasell, I., 2001. Extinction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol. 211, 11–27.

    Article  Google Scholar 

  • Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M., 2006. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505.

    Article  Google Scholar 

  • Peck, J.R., Feldman, M.W., 1988. Kin selection and the evolution of monogamy. Science 240, 1672–1674.

    Article  MathSciNet  Google Scholar 

  • Pielou, E.C., 1977. Mathematical Ecology. Wiley, New York.

    Google Scholar 

  • Seneta, E., 1996. Quasi-stationary behaviour in the random walk with continuous time. Aust. J. Stat. 8, 92–98.

    MathSciNet  Google Scholar 

  • Swift, R.J., 2002. A stochastic predator–prey model. Irish Math. Soc. Bull. 48, 57–63.

    MathSciNet  Google Scholar 

  • Tao, Y., 2004. Intrinsic noise, gene regulation and steady-state statistics in a two-gene network. J. Theor. Biol. 231, 563–568.

    Article  Google Scholar 

  • Tao, Y., Jia, Y., Dewey, T.G., 2005. Stochastic fluctuations in gene expression for far from equilibrium: Omega expansion and linear noise approximation. J. Phys. Chem. 122, 124108.

    Article  Google Scholar 

  • Taylor, C., Fudenberg, D., Sasaki, A., Nowak, M.A., 2004. Evolutionary game dynamics in finite populations. Bull. Math. Biol. 66, 1621–1644.

    Article  MathSciNet  Google Scholar 

  • Taylor, P.D., Jonker, L.B., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145–156.

    Article  MATH  MathSciNet  Google Scholar 

  • Thattai, M., van Oudenaarden, A., 2001. Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. U.S.A. 98, 8614–8619.

    Article  Google Scholar 

  • Van Kampen, N. G., 1992. Stochastic Process in Physics and Chemistry. North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Cressman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Cressman, R. Stochastic Fluctuations Through Intrinsic Noise in Evolutionary Game Dynamics. Bull. Math. Biol. 69, 1377–1399 (2007). https://doi.org/10.1007/s11538-006-9170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9170-0

Navigation