Skip to main content
Log in

A Multidimensional Multispecies Continuum Model for Heterogeneous Biofilm Development

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2007

An Erratum to this article was published on 30 June 2007

Abstract

We propose a multidimensional continuum model for heterogeneous growth of biofilm systems with multiple species and multiple substrates. The new model provides a deterministic framework for the study of the interactions between several spe1cies and their effects on biofilm heterogeneity. It consists of a system of partial differential equations derived on the basis of conservation laws and reaction kinetics. The derivation and key assumptions are presented. The assumptions used are a combination of those used in the established one dimensional model, due to Wanner and Gujer, and for the viscous fluid model, of Dockery and Klapper. The work of Wanner and Gujer in particular has been extensively used through the years, and thus this new model is an extension to several spatial dimensions of an already proven working model. The model equations are solved using numerical techniques, for purposes of simulation and verification. The new model is applied to two different biofilm systems in several spatial dimensions, one of which is equivalent to a system originally studied by Wanner and Gujer. Dimensionless formulations for these two systems are given, and numerical simulation results with varying initial conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpkvist, E., Overgaard, N., Gustafsson, S., Heyden, A., 2004a. A new mathematical model for chemotactic bacterial colony growth. Water Sci. Technol. 49(11–12), 187–192.

    Google Scholar 

  • Alpkvist, E., Overgaard, N., Heyden, A., 2004b. 3-D simulations and structural parameters for a continuum biofilm model. In: Proceedings of the Biofilms 2004, Las Vegas, USA, pp. 231–236.

  • Chen, S., Merriman, B., Osher, S., Smereka, P., 1997. A simple level set method for solving Stefan problems. J. Comp. Phys. 135(1), 8–29.

    Article  MATH  Google Scholar 

  • Cogan, N., Keener, J.P., 2004. The role of the biofilm matrix in structural development. Math. Med. Biol. 21(2), 147–166.

    Article  MATH  Google Scholar 

  • Dockery, J., Klapper, I., 2001. Finger formation in biofilm layers. SIAM J. Appl. Math. 62(3), 853–869.

    Article  MATH  Google Scholar 

  • Eberl, H., 2004. A deterministic continuum model for the formation of EPS in heterogeneous biofilm architectures. In: Proceedings of the Biofilms 2004, Las Vegas, USA, pp. 237–242.

  • Eberl, H., Parker, D., van Loosdrecht, M., 2001. A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161–175.

    MATH  Google Scholar 

  • Efendiv, M., Eberl, H., Zelik, S., 2002. Existence and longtime behavior of solutions of a nonlinear reaction-diffusion system arising in the modeling of biofilms. In: Nonlinear Systems and Related Topics, RIMS Tokyo, pp. 49–79.

  • Gibou, F., Fedkiw, R., Cheng, L.T., Kang, M., 2002. A second order accurate symmetric discretization of the Poisson equation on irregular domains. J. Comp. Phys. 176, 205–227.

    Article  MATH  Google Scholar 

  • Hackbusch, W., 1985. Multi-Grid Methods and Applications. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Hunt, S., Hamilton, M., Sears, J., Harkin, G., Reno, J., 2003. A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology 149, 1155–1163.

    Article  Google Scholar 

  • James, G., Beaudette, L., Costerton, J., 1995. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. 15, 257–262.

    Article  Google Scholar 

  • Jiang, G., Peng, D., 2000. Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143.

    Article  MATH  Google Scholar 

  • Klapper, I., 2004. Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth. Bull. Math Biol. 66, 809–824.

    Article  Google Scholar 

  • Kreft, J., Picioreanu, C., Wimpenny, J., Loosdrecht, M., 2001. Individual-based modelling of biofilms. Microbiology 147, 2897–2912.

    Google Scholar 

  • Kreft, J., Wimpenny, J., 2001. Effect of eps on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci. Technol. 43(6), 135–141.

    Google Scholar 

  • Liu, X.-D., Fedkiw, R., Kang, M., 2000. A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comp. Phys. 160, 151–178.

    Article  MATH  Google Scholar 

  • Noguera, D., Picioreanu, C., 2004. Results from the multi-species benchmark problem 3 (bm3) using two-dimensional models. Water Sci. Technol. 49(11–12), 169–176.

    Google Scholar 

  • Noguera, D.R., Pizarro, G., Stahl, D.A., Rittman, B.E., 1999. Simulation of multispecies biofilm development in three dimensions. Water Sci. Technol. 39(7), 123–130.

    Article  Google Scholar 

  • Osher, S., Fedkiw, R., 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Overgaard, N., Alpkvist, E., 2004. An investigation of Dockery–Klapper’ s biofilm model in the growth- and transport-limited extreme cases. In: Proceedings of the Biofilms 2004, Las Vegas, USA, pp. 236–241.

  • Picioreanu, C., Kreft, J., van Loosdrecht, M., 2004. Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70(5), 3024–3040.

    Article  Google Scholar 

  • Picioreanu, C., van Loosdrecht, M., Heijnen, J., 1998a. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58, 101–116.

    Article  Google Scholar 

  • Picioreanu, C., van Loosdrecht, M., Heijnen, J., 1998b. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58, 101–116.

    Article  Google Scholar 

  • Picioreanu, C., van Loosdrecht, M., Heijnen, J., 1999. Discrete-differential modelling of biofilm structure. Water Sci. Technol. 39(7), 115–122.

    Article  Google Scholar 

  • Pritchett, L., 2000. Analysis of a one dimensional biofilm model. Ph.D. thesis, Montana State University.

  • Reichert, P., 1998. Aquasim 2.0–computer program for the identification and simulation of aquatic systems. Technical Report, Swiss Federal Instritute for Environmental Science and Technolgy (EAWAG).

  • Rittmann, B., Manem, J., 1992. Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnol. Bioeng. 39, 914–922.

    Article  Google Scholar 

  • Sethian, J., 1999. Level Set Methods and Fast Marching Methods, 2nd edition. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Shaw, T., Winston, M., Rupp, C., Klapper, I., Stoodley, P., 1996. Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett. 93(9), 1–4.

    Google Scholar 

  • Shu, C.-W., 1988. Total-variation-diminishing time discretization. SIAM J. Sci. Comput. 9(6), 1073–1084.

    Article  MATH  Google Scholar 

  • Wanner, O., Gujer, W., 1986. A multi-species biofilm model. Biotechnol. Bioeng. 28, 314–328.

    Article  Google Scholar 

  • Wäsche, S., Horn, H., Hempel, D., 2002. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Sci. Technol. 36(19), 4775–4784.

    Google Scholar 

  • Xavier, J., Picioreanu, C., van Loosdrecht, M., 2004. A modelling study of the activity and structure of biofilms in biological reactors. Biofilms 1(3), 377–391.

    Article  Google Scholar 

  • Xavier, J., Picioreanu, C., van Loosdrecht, M., 2005. A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ. Microbiol. 7(8), 1085–1103.

    Article  Google Scholar 

  • Yang, S., Lewandowski, Z., 1995. Measurement of local mass transfer coefficient in biofilms. Biotechnol. Bioeng. 48, 737–744.

    Article  Google Scholar 

  • Zhang, T.C., Bishop, P.L., 1994. Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid–biofilm interface. Water Sci. Technol. 30(11), 47–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Alpkvista.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11538-007-9212-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpkvista, E., Klapper, I. A Multidimensional Multispecies Continuum Model for Heterogeneous Biofilm Development. Bull. Math. Biol. 69, 765–789 (2007). https://doi.org/10.1007/s11538-006-9168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9168-7

Keywords

Navigation