Skip to main content

Advertisement

Log in

Impulsive Vaccination of an SEIRS Model with Time Delay and Varying Total Population Size

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pulse vaccination is an effective and important strategy for the elimination of infectious diseases. A delayed SEIRS epidemic model with pulse vaccination and varying total population size is proposed in this paper. We point out, if R* < 1, the infectious population disappear so the disease dies out, while if R *; > 1, the infectious population persist. Our results indicate that a long period of pulsing or a small pulse vaccination rate is sufficient condition for the permanence of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agur, Z., Cojocaru, L., Mazor, G., Anderson, R.M., Danon, Y.L., 1993. Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90, 11698–11702.

    Article  Google Scholar 

  • Al-Showaikh, F.N.M., Twizell, E.H., 2005. One-dimensional measles dynamics. Appl. Math. Comput. 152, 169–194.

    Article  MathSciNet  Google Scholar 

  • Anderson, R.M., May, R.M., 1979. Population biology of infectious diseases I. Nature 180, 361–367.

    Article  Google Scholar 

  • Bainov, D.D., Simeonov, P.S., 1993. Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, New York.

    MATH  Google Scholar 

  • Cirino, S., da Silva, J.A.L., 2004. SEIR epidemic model of dengue transmission in coupled populations (in Portuguese). Tend. Mat. Apl. Comput. 5(1), 55–64.

    MathSciNet  Google Scholar 

  • Cooke, K.L., van Den Driessche, P., 1996. Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35, 240–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Cull, P., 1981. Global stability for population models. Bull. Math. Biol. 43, 47–58.

    MATH  MathSciNet  Google Scholar 

  • d'Onofrio, A., 2002. Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci. 179(1), 57–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Esteva, L., Vargas, C., 2003. Coexistence of different serotypes of dengue virus. J. Math. Biol. 46, 31–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Hui, J., Chen, L., 2004. Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Discrete Continuous Dynamical Syst. Ser. B 4, 595–605.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuang, Y., 1993. Delay Differential Equation with Application in Population Dynamics. Academic Press, New York, pp. 67–70.

    Google Scholar 

  • Lakshmikantham, V., Bainov, D.D., Simeonov, P.S., 1989. Theory of Impulsive Differential Equations. World Scientific, Singapore.

    MATH  Google Scholar 

  • Langlais, W., Suppo, C., 2000. A remark on a generic SEIRS model and application to cat retroviruses and fox rabies. Math. Comput. Modell. 31, 117–124.

    Article  Google Scholar 

  • Murray, A.G., O'Callaghan, M., Jones, B., 2001. Simple models of massive epidemics of herpesvirus in Australian (and New Zealand) pilchards. Environ. Int. 27, 243–248.

    Article  Google Scholar 

  • Ramsay, M., Gay, N., Miller, E., 1994. The epidemiology of measles in England and Wales: Rationale for 1994 national vaccination campaign. Commun. Dis. Rep. 4(12), 141–146.

    Google Scholar 

  • Sabin, A.B., 1991. Measles: Killer of millions in developing countries: Strategies of elimination and continuing control. Eur. J. Epidemiol. 7, 1–22.

    Google Scholar 

  • Schuette, M.C., 2003. A qualitative analysis of a model for the transmission of varicella-zoster virus. Math. Biosci. 182, 113–126.

    Article  MATH  MathSciNet  Google Scholar 

  • Shulgin, B., Stone, L., Agur, Z., 1998. Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 1123–1148.

    Article  MATH  Google Scholar 

  • Stone, L., Shulgin, B., Agur, Z., 2000. Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Modell. 31, 207–215.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., 2002. Global behavior of an SEIRS epidemic model with time delays. Appl. Math. Lett. 15, 423–428.

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, J., Zhou, Y., 2004. Hepatitis epidemic models with proportional and pulse vaccination (in Chinese). J. Biomath. 19, 149–155.

    MathSciNet  Google Scholar 

  • Zhou, Y., Liu, H., 2003. Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Modell. 38, 299–308.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujing Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Chen, L. & Teng, Z. Impulsive Vaccination of an SEIRS Model with Time Delay and Varying Total Population Size. Bull. Math. Biol. 69, 731–745 (2007). https://doi.org/10.1007/s11538-006-9149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9149-x

Keywords

Navigation