Skip to main content
Log in

Oscillations and waves of cyclic AMP in Dictyostelium: A prototype for spatio-temporal organization and pulsatile intercellular communication

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The amoebae Dictyostelium discoideum aggregate after starvation in a wavelike manner in response to periodic pulses of cyclic AMP (cAMP) secreted by cells which behave as aggregation centers. In addition to autonomous oscillations, the cAMP signaling system that controls aggregation is also capable of excitable behavior, which consists in the transient amplification of suprathreshold pulses of extracellular cAMP. Since the first theoretical model for slime mold aggregation proposed by Keller and Segel in 1970, many theoretical studies have addressed various aspects of the mechanism and function of cAMP signaling in Dictyostelium. This paper presents a brief overview of these developments as well as some reminiscences of the author's collaboration with Lee Segel in modeling the dynamics of cAMP relay and oscillations. Considered in turn are models for cAMP signaling in Dictyostelium, the developmental path followed by the cAMP signaling system after starvation, the frequency encoding of cAMP signals, and the origin of concentric or spiral waves of cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara, F., Monk, M., 1974. Signal propagation during aggregation in the slime mould D. discoideum. J. Gen. Microbiol. 85, 321–334.

    Google Scholar 

  • Alon, U., Surette, M.G., Barkai, N., Leibler, S., 1999. Robustness in bacterial chemotaxis. Nature 397, 168–171.

    Article  Google Scholar 

  • Barchilon, M., Segel, L.A., 1988. Adaptation, oscillations and relay in a model for cAMP secretion in cellular slime molds. J. Theor. Biol. 133, 437–446.

    Article  Google Scholar 

  • Bretschneider, T., Siegert, F., Weijer, C.J., 1995. Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc. Natl. Acad. Sci. USA 92, 4387–4391.

    Article  Google Scholar 

  • Dallon, J.C., Othmer, H.G., 1997. A discrete cell model with adaptive signaling for aggregation of D. discoideum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 391–417.

    Article  Google Scholar 

  • Dallon, J.C., Othmer, H.G., 2004. How cellular movement determines the collective force generated by the D. discoideum slug. J. Theor. Biol. 231, 203–222.

    Article  MathSciNet  Google Scholar 

  • Darmon, M., Brachet, P., Pereira da Silva, L.H., 1975. Chemotactic signals induce cell differentiation in D. discoideum. Proc. Natl. Acad. Sci. USA 72, 3163–3166.

    Article  Google Scholar 

  • Devreotes, P., 1989. D. discoideum: a model system for cell-cell interactions in development. Science 245, 1054–1058.

    Article  Google Scholar 

  • Devreotes, P.N., Sherring, J.A., 1985. Kinetics and concentration dependence of reversible cAMP-induced modification of the surface cAMP receptor in Dictyostelium. J. Biol. Chem. 260, 6378–6384.

    Google Scholar 

  • Dinauer, M., Steck, T.L., Devreotes, P.N., 1980. Cyclic 3′,5′ AMP relay in D. discoideum. V. Adaptation of the cAMP signaling response during cAMP stimulation. J. Cell Biol. 86, 554–561.

    Article  Google Scholar 

  • Dormann, D., Vasiev, B., Weijer, C.J., 1998. Propagating waves control D. discoideum morphogenesis. Biophys Chem. 72, 21–35.

    Article  Google Scholar 

  • Eichinger, L. et al., 2005. The genome of the social amoeba D. discoideum. Nature 435, 43–57.

    Article  Google Scholar 

  • Gerisch, G., 1968. Cell aggregation and differentiation in Dictyostelium. Curr. Top. Dev. Biol. 3, 157–197.

    Article  Google Scholar 

  • Gerisch, G., Fromm, H., Huesgen, A., Wick, U., 1975. Control of cell contact sites by cAMP pulses in differentiating Dictyostelium cells. Nature 255, 547–549.

    Article  Google Scholar 

  • Gerisch, G., Hess, B., 1974. Cyclic-AMP controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proc. Natl. Acad. Sci. USA 71, 2118–2122.

    Article  Google Scholar 

  • Gerisch, G., Malchow, D., Roos, W., Wick, U., 1979. Oscillations of cyclic nucleotide concentrations in relation to the excitability of Dictyostelium cells. J. Exp. Biol. 81, 33–47.

    Google Scholar 

  • Gerisch, G., Wick, U., 1975. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Commun. 65, 364–370.

    Article  Google Scholar 

  • Glansdorff, P., Prigogine, I., 1971. Thermodynamics of Structure, Stability and Fluctuations. Wiley, New York.

    Google Scholar 

  • Goldbeter, A., 1975. Mechanism for oscillatory synthesis of cyclic AMP in D. discoideum. Nature 253, 540–542.

    Article  Google Scholar 

  • Goldbeter, A., 1980. Models for oscillations and excitability in biochemical systems. In: Segel, L.A., (Ed.), Mathematical Models in Molecular and Cellular Biology. Cambridge Univ. Press, Cambridge, pp. 248–291.

    Google Scholar 

  • Goldbeter, A., 1996. Biochemical Oscillations and Cellular Rhythms. Cambridge Univ. Press, Cambridge, UK.

    MATH  Google Scholar 

  • Goldbeter, A., 2004. Computational biology: A propagating wave of interest. Curr. Biol. 14, R601-R602.

    Article  Google Scholar 

  • Goldbeter, A., Caplan, S.R., 1976. Oscillatory enzymes. Annu. Rev. Biophys. Bioeng. 5, 449–476.

    Article  Google Scholar 

  • Goldbeter, A., Erneux, T., Segel, L.A., 1978. Excitability in the adenylate cyclase reaction in D. discoideum. FEBS Lett. 89, 237–241.

    Article  Google Scholar 

  • Goldbeter, A., Koshland, D.E. Jr., 1982. Simple molecular model for sensing and adaptation based on receptor modification, with application to bacterial chemotaxis. J. Mol. Biol. 161, 395–416.

    Article  Google Scholar 

  • Goldbeter, A., Segel, L.A., 1977. Unified mechanism for relay and oscillations of cyclic AMP in D. discoideum. Proc. Natl. Acad. Sci. USA 74, 1543–1547.

    Article  Google Scholar 

  • Goldbeter, A., Segel, L.A., 1980. Control of developmental transitions in the cyclic AMP signaling system of D. discoideum. Differentiation 17, 127–135.

    Article  Google Scholar 

  • Gundersen, R.E., Johnson, R., Lilly, P., Pitt, G., Pupillo, M., Sun, T., Vaughan, R., Devreotes, P.N., 1989. Reversible phosphorylation of G-protein-coupled receptors controls cAMP oscillations in Dictyostelium. In: Goldbeter, A. (Ed.), Cell to Cell Signaling: From Experiments to Theoretical Models. Academic Press, London, pp. 477–488.

    Google Scholar 

  • Halloy, J., Lauzeral, J., Goldbeter, A., 1998. Modeling oscillations and waves of cAMP in Dictyostelium cells. Biophys. Chem. 72, 9–19.

    Article  Google Scholar 

  • Höfer, T., Sherratt, J.A., Maini, P.K., 1995. D. discoideum: Cellular self-organization in an excitable biological medium. Proc. R. Soc. Lon. B 259, 249–257.

    Article  Google Scholar 

  • Jacquet, M., Renault, G., Lallet, S., De Mey, J., Goldbeter, A., 2003. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497–505.

    Article  Google Scholar 

  • Keller, E.F., Segel, L.A., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Knox, B.E., Devreotes, P.N., Goldbeter, A., Segel, L.A., 1986. A molecular mechanism for sensory adaptation based on ligand-induced receptor modification. Proc. Natl. Acad. Sci. USA 83, 2345–2349.

    Article  Google Scholar 

  • Konijn, T.M., Van de Meene, J.G.C., Bonner, J.T., Barkley, D.S., 1967. The acrasin activity of adenosine 3′,5′-cyclic phosphate. Proc. Natl. Acad. Sci. USA 58, 1152–1154.

    Article  Google Scholar 

  • Laub, M.T., Loomis, W.F., 1998. A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol Biol Cell. 9, 3521–3532.

    Google Scholar 

  • Lauzeral, J., Halloy, J., Goldbeter, A., 1997. Desynchronization of cells on the developmental path triggers the formation of waves of cAMP during Dictyostelium aggregation. Proc. Natl. Acad. Sci. USA 94, 9153–9158.

    Article  Google Scholar 

  • Levchenko, A., Iglesias, P.A., 2002. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63.

    Google Scholar 

  • Levine, H., Aranson, I., Tsimring, L., Truong, T.V., 1996. Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc. Natl. Acad. Sci. USA 93, 6382–6386.

    Article  Google Scholar 

  • Li, Y.X., Goldbeter, A., 1989. Frequency specificity in intercellular communication: The influence of patterns of periodic signaling on target cell responsiveness. Biophys. J. 55, 125–145.

    Google Scholar 

  • Li, Y.X., Goldbeter, A., 1990. Frequency encoding of pulsatile signals of cyclic AMP based on receptor desensitization in Dictyostelium cells. J. Theor. Biol. 146, 355–367.

    Article  Google Scholar 

  • Li, Y.X., Goldbeter, A., 1992. Pulsatile signaling in intercellular communication: Periodic stimuli are more efficient than random or chaotic signals in a model based on receptor desensitization. Biophys. J. 61, 161–171.

    Google Scholar 

  • Lin, C.C., Segel, L.A., 1988. Mathematics Applied to Deterministic Problems in the Natural Sciences. SIAM Publications, USA.

    MATH  Google Scholar 

  • Loomis, W.F., 1979. Biochemistry of aggregation in Dictyostelium. Dev. Biol. 70, 1–12.

    Article  Google Scholar 

  • Loomis, W.F., 1996. Genetic networks that regulate development in Dictyostelium cells. Microbiol. Rev. 60, 135–150.

    Google Scholar 

  • Ma, L., Janetopoulos, C., Yang, L., Devreotes, P.N., Iglesias, P.A., 2004. Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys. J. 87, 3764–3774.

    Article  Google Scholar 

  • Macnab, R.M., Koshland, D.E. Jr., 1972. The gradient sensory mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69, 2509–2512.

    Article  Google Scholar 

  • Maeda, M., Lu, S., Shaulsky, G., Miyazaki, Y., Kuwayama, H., Tanaka, Y., Kuspa, A., Loomis, W.F., 2004. Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science 304, 875–878.

    Article  Google Scholar 

  • Manahan, C.L., Iglesias, P.A., Long, Y., Devreotes, P.N., 2004. Chemoattractant signaling in D. discoideum. Annu. Rev. Cell Dev. Biol. 20, 223–253.

    Article  Google Scholar 

  • Marée, A.F., Hogeweg, P., 2001. How amoeboids self-organize into a fruiting body: Multicellular coordination in D. discoideum. Proc. Natl Acad. Sci. USA 98, 3879–3883.

    Article  Google Scholar 

  • Marée, A.F., Hogeweg, P., 2002. Modeling Dictyostelium discoideum morphogenesis: The culmination. Bull. Math. Biol. 64, 327–353.

    Article  Google Scholar 

  • Martiel, J. L, Goldbeter, A., 1987. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52, 807–828.

    Article  Google Scholar 

  • Nanjundiah, V., 1988. Periodic stimuli are more successful than randomly spaced ones for inducing development in D. discoideum. Biosci. Rep. 8, 571–577.

    Article  Google Scholar 

  • Nanjundiah, V., 1997. Models for pattern formation in the Dictyostelid slime molds. In: Maeda, Y., Inouye, K., Takeuchi, I., (Eds.), Dictyostelium: A Model System for Cell and Developmental Biology. University Academy Press, Tokyo, pp.

    Google Scholar 

  • Nanjundiah, V., 1998. Cyclic AMP oscillations in D. discoideum: Models and observations. Biophys. Chem. 72, 1–8.

    Article  Google Scholar 

  • Nicolis, G., Prigogine, I., 1977. Self-Organization in Nonequilibtrium Systems. Wiley, New York.

    Google Scholar 

  • Odell, G.M., Bonner, J.T., 1986. How the D. discoideum grex crawls. Philos. Trans. R. Soc. Lond. 312, 487–525.

    Article  Google Scholar 

  • Palsson, E., Cox, E.C., 1996. Origin and evolution of circular waves and spirals in D. discoideum territories. Proc. Natl Acad. Sci. USA 93, 1151–1155.

    Article  Google Scholar 

  • Palsson, E., Lee, K.J., Goldstein, R.E., Franke, J., Kessin, R.H., Cox, E.C., 1997. Selection for spiral waves in the social amoebae Dictyostelium. Proc. Natl. Acad. Sci. USA 94, 13719–13723.

    Article  Google Scholar 

  • Parnas, H., Segel, L.A., 1978. A computer simulation of pulsatile aggregation in D. discoideum. J. Theor. Biol. 71, 185–207.

    Article  Google Scholar 

  • Roos, W., Nanjundiah, V., Malchow, D., Gerisch, G., 1975. Amplification of cyclic-AMP signals in aggregating cells of D. discoideum. FEBS Lett. 53, 139–142.

    Article  Google Scholar 

  • Roos, W., Scheidegger, C., Gerisch, G., 1977. Adenylate cyclase oscillations as signals for cell aggregation in D. discoideum. Nature 266, 259–261.

    Article  Google Scholar 

  • Rossomando, E.F., Sussman, M., 1973. A 5′-adenosine monophosphate-dependent adenylate cyclase and an adenosine 3′,5′-cyclic monophosphate-dependent adenosine triphosphate pyrophosphohydrolase in D. discoideum. Proc. Natl. Acad. Sci. USA 70, 1254–1257.

    Article  Google Scholar 

  • Sawai, S., Thomason, P.A., Cox, E.C., 2005. An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations. Nature 433, 323–326.

    Article  Google Scholar 

  • Segel, L.A., 1984. Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Segel, L.A., 2001. Computing an organism. Proc. Natl. Acad. Sci. USA 98, 3639–3640.

    Article  Google Scholar 

  • Segel, L.A., Goldbeter, A., 1994. Scaling in biochemical kinetics: Dissection of a relaxation oscillator. J. Math. Biol. 32, 147–160.

    Article  MATH  Google Scholar 

  • Segel, L.A., Goldbeter, A., Devreotes, P.N., Knox, B.E., 1986. A mechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179.

    Article  MathSciNet  Google Scholar 

  • Shaffer, B.M., 1962. The acrasina. Adv. Morphog. 2, 109–182.

    Google Scholar 

  • Tomchik, K.J., Devreotes, P.N., 1981. Adenosine 3′,5′-monophosphate waves in D. discoideum: A demonstration by isotope dilution-fluorography. Science 212, 443–446.

    Article  Google Scholar 

  • Vasiev, B., Weijer, C.J., 2003. Modeling of D. discoideum slug migration. J. Theor. Biol. 223, 347–359.

    Article  MathSciNet  Google Scholar 

  • Weijer, C.J., 2004. Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14, 392–398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Goldbeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldbeter, A. Oscillations and waves of cyclic AMP in Dictyostelium: A prototype for spatio-temporal organization and pulsatile intercellular communication. Bull. Math. Biol. 68, 1095–1109 (2006). https://doi.org/10.1007/s11538-006-9090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9090-z

Keywords

Navigation