Skip to main content

Advertisement

Log in

Proliferation and Death in a Binary Environment: A Stochastic Model of Cellular Ecosystems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The activation, growth and death of animal cells are accompanied by changes in the chemical composition of the surrounding environment. Cells and their microscopic environment constitute therefore a cellular ecosystem whose time-evolution determines processes of interest for either biology (e.g. animal development) and medicine (e.g. tumor spreading, immune response). In this paper, we consider a general stochastic model of the interplay between cells and environmental cellular niches. Niches may be either favourable or unfavourable in sustaining cell activation, growth and death, the state of the niches depending on the state of the cells. Under the hypothesis of random coupling between the state of the environmental niche and the state of the cell, the rescaled model reduces to a set of four non-linear differential equations. The biological meaning of the model is studied and illustrated by fitting experimental data on the growth of multicellular tumor spheroids. A detailed analysis of the stochastic model, of its deterministic limit, and of normal fluctuations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajzer, Z., Vuk-Pavlovic, S., Huzak, M., 1997. Mathematical modeling of tumor growth kinetics. In: Adam, J.A., Bellomo, N. (Eds.), A Survey of Models for Tumor-Immune System Dynamics. Birkhauser, Boston, pp. 89–128.

    Google Scholar 

  • Briggs, C.J., Hoopes, M.F., 2004. Stabilizing effects in spatial parasitoid—host and predator—prey models: A review. Theor. Popul. Biol. 65, 299–315.

    Article  PubMed  Google Scholar 

  • Chignola, R., Schenetti, A., Andrighetto, G., Chiesa, E., Foroni, R., Sartoris, S., Tridente, G., Liberati, D., 2000. Forecasting the growth of multicell tumour spheroids: Implications for the dynamic growth of solid tumours. Cell Prolif. 33, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Chignola, R., Schenetti, A., Chiesa, E., Foroni, R., Sartoris, S., Brendolan, A., Tridente, G., Andrighetto, G., Liberati, D., 1999. Oscillating growth patterns of multicellular tumour spheroids. Cell Prolif. 32, 39–48.

    PubMed  CAS  Google Scholar 

  • De Boer, R.J., Perelson, A.S., 1998. Target cell limited immune control models of HIV infection: A comparison. J. Theor. Biol. 190, 201–214.

    Article  PubMed  Google Scholar 

  • Durand, R.E., 1976. Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9, 403–412.

    PubMed  CAS  Google Scholar 

  • Durand, R.E., 1981. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res. 41, 3495–3498.

    PubMed  CAS  Google Scholar 

  • Ethier, S.N., Kurtz, T.G., 1986. Markov Processes. Characterization and Convergence. Wiley, New York.

    MATH  Google Scholar 

  • Gaudin, E., Rosado, M., Agenes, F., McLean, A., Freitas, A.A., 2004. B-cell homeostasis, competition, resources and positive selection by self-antigens. Immunol. Rev. 197, 102–115.

    Article  PubMed  CAS  Google Scholar 

  • Gourley, S.A., Kuang, Y., 2004. A stage structured predator—prey models and its dependence on maturation delay and death rate. J. Math. Biol. 49, 188–200.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Hanahan, D., Weinberg, R., 2000. The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Komarova, N.L., 2005. Mathematical modeling of tumorigenesis: Mission possible. Curr. Opin. Oncol. 17, 39–43.

    Article  PubMed  Google Scholar 

  • Landry, J., Freyer, J.P., Sutherland, R.M., 1981. Shedding of mitotic cells from the surface of multicell spheroids during growth. J. Cell Physiol. 106, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Lenardo, M., Chan, K.M., Hornung, F., McFarland, H., Siegel, R., Wang, J., Zheng, L., 1999. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253.

    Article  PubMed  CAS  Google Scholar 

  • Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S., 1991. Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput. 29, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • McLean, A.R., Rosado, M.M., Agenes, F., Vasconcellos, R., Freitas, A.A., 1997. Resource competition as a mechanism for B cell homeostasis. Proc. Natl. Acad. Sci. U.S.A. 94, 5792–5797.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Mueller-Klieser, W., 1997. Three-dimensional cell cultures: From molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1123.

    PubMed  CAS  Google Scholar 

  • Nederman, T., Norling, B., Glimelius, B., Carlsson, J., Brunk, U., 1984. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44, 3090–3097.

    PubMed  CAS  Google Scholar 

  • Raghunand, N., Gatenby, R.A., Gillies, R.J., 2003. Microenvironmental and cellular consequences of altered blood flows in tumours. Br. J. Radiol. 76, S11–S22.

    Article  PubMed  Google Scholar 

  • Sharov, A.A., 1992. The life-system approach: A system paradigm in population ecology. Oikos 63, 485–494

    Google Scholar 

  • Subarsky, P., Hill, R.P., 2003. The hypoxic tumour microenvironment and metastatic progression. Clin. Exp. Metastasis 20, 237–250.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, R.M., 1988. Cell and environment interaction in tumor microregions: The multicell spheroid model. Science 240, 177–184.

    PubMed  CAS  ADS  Google Scholar 

  • Waleh, N.S., Gallo, J., Grant, T.D., Murphy, B.S., Kramer, R.H., Sutherland, R.M., 1994. Selective down-regulation of integrin receptors in spheroids of squamous cell carcinoma. Cancer Res. 54, 838–843.

    PubMed  CAS  Google Scholar 

  • Yuhas, J.M., Li, A.P., 1978. Growth fraction as the major determinant of multicellular tumor spheroid growth. Cancer Res. 38, 1528–1532.

    PubMed  CAS  Google Scholar 

  • Zetterberg, A., Larsson, O., 1985. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 82, 5365–5369.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Siri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chignola, R., Pra, P.D., Morato, L.M. et al. Proliferation and Death in a Binary Environment: A Stochastic Model of Cellular Ecosystems. Bull. Math. Biol. 68, 1661–1680 (2006). https://doi.org/10.1007/s11538-006-9078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9078-8

Keywords

Navigation