Skip to main content
Log in

The Impact of the Allee Effect in Dispersal and Patch-Occupancy Age on the Dynamics of Metapopulations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we introduce a Levins-type metapopulation model with empty and occupied patches, and dispersing population. We structure the proportion of occupied patches according to the patch-occupancy age. We observe that patch-occupancy age may destabilize the metapopulation, leading to persistent oscillations. We also allow for the dispersal rate to vary with the proportion of empty patches in a monotone or unimodal way. The unimodal dependence leads to multiple non-trivial equilibria and bistability when the reproduction number of the metapopulation R <1 but greater than a lower critical value R * . We show that the metapopulation will persist independently of its initial status if R > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasekare, P., 1998. Allee effects in metapopulation dynamics. Am. Nat. 125(2), 298–302.

    Google Scholar 

  • Barbour, A.D., Pugliese, A., 2005. Asymptotic behavior of a metapopulation model. Ann. Appl. Probab. 15, 1306–1338.

    Article  MATH  MathSciNet  Google Scholar 

  • Casagrandi, R., Gatto, M., 2002. Habitat destruction, environmental catastrophes and metapopulation extinction. Theor. Pop. Biol. 61, 127–140.

    Article  MATH  Google Scholar 

  • Feng, Z., Rong, L., Swihart, R., 2005. Dynamics of an age-structured metapopulation model. Nat. Resour. Model. 18, 415–440.

    Article  MATH  MathSciNet  Google Scholar 

  • Gotelli, N.J., 1991. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138(3), 768–776.

    Google Scholar 

  • Gurtin, M.E., MacCamy, R.C., 1974. Non-linear age-dependent population dynamics. Arch. Rational Mech. Anal. 54, 281–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg, M., Hanski, I., 1992. Single-species metapopulation dynamics: A structured model. Theor. Popul. Biol. 42, 35–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg, M., Hanski, I., Hastings, A., 1997. Structured metapopulation models. In: Hanski, I., Gilpin, M.E. (Eds.), Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, New York, pp. 93–122.

  • Hale, J.K., 1988. Behavior of Dissipative Systems. AMS, Providence.

  • Hanski, I., 1994. A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162.

    Article  Google Scholar 

  • Hanski, I., 1999. Metapopulation ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Harding, K.C., McNamara, J.M., 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160(2), 173–185.

    Article  Google Scholar 

  • Hastings, A., 1995. A metapopulation model with population jumps of varying size. Math. Biosci. 128, 285–298.

    Article  MATH  Google Scholar 

  • Hastings, A., 2004. Metapopulation persistence with age-dependent disturbance or succession. Science 301, 1525–1526.

    Google Scholar 

  • Keeling, M.J., 2000. Metapopulation moments: Coupling, stochasticity and persistence. J. Anim. Ecol. 69(5), 725–736.

    Article  Google Scholar 

  • Keymer, J.E., Marquet, P.A., Velasco-Hernández, J.X., Levin, S., 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. Am. Nat. 156(5), 478–494.

    Google Scholar 

  • Le Galliard, J.-F., Ferriére, R., Clobert, J., 2005. Effect of patch occupancy on immigration in the common lizard. J. Anim. Ecol. 74, 241–249.

    Article  Google Scholar 

  • Levins, R., Culver, D., 1971. Regional coexistence of species and competition between rare species. PNAS 6, 1246–1248.

    Google Scholar 

  • Martcheva, M., Castillo-Chavez, C., 2003. Diseases with chronic stage in a population with varying size. Math. Biosci. 182, 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  • Martcheva, M., Thieme, H.R., 2003. Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. Math. Biol. 46, 385–424.

    Article  MATH  MathSciNet  Google Scholar 

  • Martcheva, M., Thieme, H.R., 2005. A metapopulation model with discrete size structure. Nat. Resour. Model. 18, 379–413.

    Article  MATH  MathSciNet  Google Scholar 

  • May, R.M., 1991. The role of ecological theory in planning the reintroduction of endagered species. Symp. Zool. Soc. London 62, 145–163.

    Google Scholar 

  • May, R.M., Nowak, M.A., 1994. Superinfection, metapopulation dynamics, and the evolution of diversity. J. Theor. Biol. 170, 95–114.

    Article  Google Scholar 

  • Nee, S., 1994. How populations persist. Nature 367, 123–124.

    Google Scholar 

  • Nee, S., May, R.M., 1992. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40.

    Article  Google Scholar 

  • Thieme, H.R., 1991. Stability change of the endemic equilibrium in age-structured models for the spread of SIR type infectious diseases. In: Differential Equations Models in Biology, Epidemiology and Ecology, no. 92 in Lecture Notes in Biomath. Springer, Berlin, pp. 139–158.

  • Thieme, H.R., 2000. Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme H.R., Castillo-Chavez, C., 1993. How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53, 1447–1479.

    MathSciNet  Google Scholar 

  • Tu, S., Ross, E., 1983. Minimum transition values and the dynamics of subcritical bifurcation. SIAM J. Appl. Math. 43, 370–385.

    Article  MathSciNet  Google Scholar 

  • Yosida, K., 1968. Functional analysis, 2nd edn. Springer-Verlag, New York.

    Google Scholar 

  • Zhou, S.-R., Wang, G., 2004. Allee-like effects in metapopulation dynamics. Math. Biosci. 189, 103–113.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia Martcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martcheva, M., Bolker, B.M. The Impact of the Allee Effect in Dispersal and Patch-Occupancy Age on the Dynamics of Metapopulations. Bull. Math. Biol. 69, 135–156 (2007). https://doi.org/10.1007/s11538-006-9075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9075-y

Keywords

Navigation