Skip to main content
Log in

Transbilayer Pores Induced by Thickness Fluctuations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Thermally-induced fluctuations of individual phospholipids in a bilayer lipid membrane (BLM) are converted into collective motions due to the intermolecular interactions. Here, we demonstrate that transbilayer stochastic pores can be generated via collective thermal movements (CTM). Using the elastic theory of continuous media applied to smectic-A liquid crystals, we estimate the pore radius and the energetic requirements for pore appearance. Three types of thermally-induced transbilayer pores could be formed through BLMs: open and stable, open and unstable, and closed. In most of the situations, two open and stable pores with different radii could be generated. Notably, the two pores have the same generation probability. Unstable pores are possible to appear across thin bilayers that contain phospholipids with a large polar headgroup. Closed pores are present throughout the cases that we have inspected. The effects of hydrophobic thickness, polar headgroup size of phospholipids, temperature, surface tension, and elastic compression on the pore formation and pore stability have been examined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, R., Frohlich, O., Lauger, P., Montal, M., 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta 394, 323–334.

    Article  Google Scholar 

  • Boal, D.H., 2001. Mechanics of the Cell. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bordi, F., Cametti, C., Motta, A., 2000. Ion permeation across model lipid membranes: A kinetic approach. J. Phys. Chem. B 104, 5318–5323.

    Article  Google Scholar 

  • Bordi, F., Cametti, C., Naglieri, A., 1999. Ion transport in lipid bilayer membranes through aqueous pores. Coll. Surf. A 159, 231–237.

    Article  Google Scholar 

  • De Gennes, P.-G., 1974. The Physics of Liquid Crystals. Clarendon Press, Oxford.

    Google Scholar 

  • Engelhardt, H., Duwe, H.P., Sackmann, E., 1985. Bilayer bending elasticity measured by fourier-analysis of thermally excited surface undulations of flaccid vesicles. J. Phys. Lett. 46, L395–L400.

    Article  Google Scholar 

  • Farago, O., 2003. “Water-free” computer model for fluid bilayer membranes. J. Chem. Phys. 119, 596–605.

    Article  Google Scholar 

  • Farago, O., Santangelo, C.D., 2005. Pore formation in fluctuating membranes. J. Chem. Phys. 122, 1606–1612.

    Article  Google Scholar 

  • Fournier, L., Joos, B., 2003. Lattice model for the kinetics of rupture of fluid bilayer membranes. Phys. Rev. E 67, 5190–5197.

    Google Scholar 

  • Freeman, S.A., Wang, M.A., Weaver, J.C., 1994. Theory of electroporation of planar Bilayer-membranes: Predictions of the aqueous area, change in capacitance, and pore–pore separation. Biophys. J. 67, 42–56.

    Google Scholar 

  • Hanke, W., Schlue, W.-R., 1993. Planar Lipid Bilayers. Methods and Applications. Academic Press, London, UK.

    Google Scholar 

  • Helfrich, W., 1973. Elastic properties of lipid Bilayers: Theory and possible experiments. Z. Naturforsch. C28, 693–703.

    Google Scholar 

  • Helfrich, P., Jakobsson, E., 1990. Calculation of deformation energies and conformations in liquid membranes containing gramicidin channels. Biophys. J. 57, 1075–1084.

    Google Scholar 

  • Hladky, S.B., Gruen, D.W.R., 1982. Thickness fluctuations in black lipid-membranes. Biophys. J. 38, 251–258.

    Google Scholar 

  • Hladky, S.B., Gruen, D.W.R., 1984. Energetics of fluctuation in lipid Bilayer thickness—response. Biophys. J. 45, 645–646.

    Google Scholar 

  • Holthuis, J.C.M., van Meer, G., Huitema, K., 2003. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol. Membrane Biol. 20, 231–241.

    Article  Google Scholar 

  • Huang, H.W., 1986. Deformation free-energy of Bilayer-membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070.

    Google Scholar 

  • Karatekin, E., Sandre, O., Guitouni, H., Borghi, N., Puech, P.H., Brochard-Wyart, F., 2003. Cascades of transient pores in giant vesicles: Line tension and transport. Biophys. J. 84, 1734–1749.

    Google Scholar 

  • Kessel, A., Ben Tal, N., May, S., 2001. Interactions of cholesterol with lipid bilayers: The preferred configuration and fluctuations. Biophys. J. 81, 643–658.

    Google Scholar 

  • Leontiadou, H., Mark, A.E., Marrink, S.J., 2004. Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys. J. 86, 2156–2164.

    Google Scholar 

  • Litster, J.D., 1975. Stability of lipid Bilayers and red blood-cell membranes. Phys. Lett. A 53, 193–194.

    Article  Google Scholar 

  • Loison, C., Mareschal, M., Schmid, F., 2004. Pores in bilayer membranes of amphiphilic molecules: Coarse-grained molecular dynamics simulations compared with simple mesoscopic models. J. Chem. Phys. 121, 1890–1900.

    Article  Google Scholar 

  • Marrink, S.J., Lindahl, E., Edholm, O., Mark, A.E., 2001. Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Am. Chem. Soc. 123, 8638–8639.

    Article  Google Scholar 

  • May, S., 2000. Protein-induced bilayer deformations: The lipid tilt degree of freedom. Eur. Biophys. J. Biophys. Lett. 29, 17–28.

    Google Scholar 

  • Moroz, J.D., Nelson, P., 1997. Dynamically stabilized pores in bilayer membranes. Biophys. J. 72, 2211–2216.

    Google Scholar 

  • Movileanu, L., Popescu, D., 1995. Differential length effects in a binary mixture of single-chain amphiphiles in planar monolayers: A 3-dimensional approach. Biosystems 36, 43–53.

    Article  Google Scholar 

  • Movileanu, L., Popescu, D., 1996. Global ratio of efficiency in a single chain binary mixture. J. Biol. Systems 4, 425–432.

    Article  Google Scholar 

  • Movileanu, L., Popescu, D., Victor, G., Turcu, G., 1997. Selective association of phospholipids as a clue for the passive flip-flop diffusion through bilayer lipid membranes. Biosystems 40, 263–275.

    Article  Google Scholar 

  • Movileanu, L., Popescu, D., 1998. A theoretical model for the association probabilities of saturated phospholipids from two-component bilayer lipid membranes. Acta Biotheor. 46, 347–368.

    Article  Google Scholar 

  • Movileanu, L., Popescu, D., Flonta, M.L., 1998. The hydrophobic acyl-chain effect in the lipid domains appearance through phospholipid bilayers. Theochem. J. Mol. Struct. 434, 213–227.

    Article  Google Scholar 

  • Movileanu, L., Popescu, D., 2004. The birth, life and death of statistical pores into a bilayer membrane. In: Recent Research Developments in Biophysics. Transworld Research Network, Kerala, pp. 61–86.

  • Neher, E., Eibl, H., 1977. Influence of Phospholipid Polar Groups on Gramicidin Channels. Biochim. Biophys. Acta 464, 37-44.

    Article  Google Scholar 

  • Neu, J.C., Krassowska, W., 2003. Modeling postshock evolution of large electropores. Phys. Rev. E 67, 2191–2195

    Article  Google Scholar 

  • Neu, J.C., Smith, K.C., Krassowska, W., 2003. Electrical energy required to form large conducting pores. Bioelectrochemistry 60, 107–114.

    Article  Google Scholar 

  • Nielsen, C., Goulian, M., Andersen, O.S., 1998. Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983.

    Google Scholar 

  • Nielsen, C., Andersen, O.S., 2000. Inclusion-induced bilayer deformations: Effects of monolayer equilibrium curvature. Biophys. J. 79, 2583–2604

    Google Scholar 

  • Partenskii, M.B., Dorman, V.L., Jordan, P.C., 1998. Membrane stability under electrical stress: A nonlocal electroelastic treatment. J. Chem. Phys. 109, 10361–10371.

    Article  Google Scholar 

  • Pastushenco, V.F., Chizmadzev Yu, A., Arakelyan, V.B., 1979. Electric breakdown of Bilayer lipid membranes. II. Calculation of the membrane lifetime in the steady state diffusion approximation. Bioelectrochem. Bioenergetics 6, 53–62.

    Article  Google Scholar 

  • Popescu, D., Margineanu, D.G., 1981. Intramembrane interactions and breakdown of lipid bilayers. Bioelectrochem. Bioenerg. 8, 581–583.

    Article  Google Scholar 

  • Popescu, D., Victor, G., 1990. Association probabilities between the single chain amphiphiles into a binary mixture in planar monolayers. Biochim. Biophys. Acta 1030, 238–250.

    Article  Google Scholar 

  • Popescu, D., Rucareanu, C., Victor, G., 1991. A Model for the appearance of statistical pores in membranes due to selfoscillations. Bioelectrochem. Bioenerg. 25, 91–103.

    Article  Google Scholar 

  • Popescu, D., Victor, G., 1991a. Calculation of the optimal surface-area for amphiphile molecules using the hard-core method. Biophys. Chem. 39, 283–286.

    Article  Google Scholar 

  • Popescu, D., Victor, G., 1991b. The transversal diffusion-coefficient of phospholipid molecules through black lipid-membranes. Bioelectrochem. Bioenerg. 25, 105–108.

    Article  Google Scholar 

  • Popescu, D., Rucareanu, C., 1992. Membrane selfoscillations model for the transbilayer statistical pores and flip-flop diffision. Mol. Cryst. Liquid Cryst. 25, 339–348.

    Google Scholar 

  • Popescu, D., 1993. Association probabilities between the single-chain amphiphiles into a binary mixture in plan monolayers (II). Biochim. Biophys. Acta 1152, 35–43.

    Article  Google Scholar 

  • Popescu, D., Movileanu, L., Victor, G., Turcu, G., 1997. Stability and instability properties of aggregation of single chain amphiphiles into binary mixtures. Bull. Math. Biol. 59, 43–61.

    Article  MATH  Google Scholar 

  • Popescu, D., Ion, S., Popescu, A.I., Movileanu, L., 2003. Elastic properties of bilayer lipid membranes and pore formation. In: Ti Tien, H., Ottova, A. (Eds.), Planar Lipid Bilayers (BLMs) and Their Applications. Elsevier Science Publishers, Amsterdam, pp. 173–204.

  • Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., Evans, E., 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Google Scholar 

  • Sackmann, E., 1995. Biological membranes: architecture and function. In: Lipowsky, R., Sackmann, E. (Eds.), Structure and Dynamics of Membranes. Elsevier/North-Holland, Amsterdam, pp. 1–63.

  • Saulis, G., 1997. Pore disappearance in a cell after electroporation: Theoretical simulation and comparison with experiments. Biophys. J. 73, 1299–1309.

    Google Scholar 

  • Schneider, M.B., Jenkins, J.T., Webb, W.W., 1984. Thermal fluctuations of large quasi-spherical bimolecular phospholipid-vesicles. J. Physique 45, 1457–1472.

    Article  Google Scholar 

  • Shillcock, J.C., Boal, D.H., 1996. Entropy-driven instability and rupture of fluid membranes. Biophys. J. 71, 317–326.

    Google Scholar 

  • Shillcock, J.C., Seifert, U., 1998. Thermally induced proliferation of pores in a model fluid membrane. Biophys. J. 74, 1754–1766.

    Google Scholar 

  • Sung, W., Park, P.J., 1997. Dynamics of pore growth in membranes and membrane stability. Biophys. J. 73, 1797–1804.

    Google Scholar 

  • Sung, W.Y., Park, P.J., 1998. Transition dynamics of biological systems on mesoscopic scales: Effects of flexibility and fluctuations. Physica A 254, 62–72.

    Article  Google Scholar 

  • Tieleman, D.P., Leontiadou, H., Mark, A.E., Marrink, S.J., 2003. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383.

    Article  Google Scholar 

  • Tieleman, D.P., 2004. The molecular basis of electroporation. BMC Biochem. 5, 1–12.

    Article  Google Scholar 

  • White, S.H., 1978. Formation of solvent-free black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23, 337–347.

    Article  Google Scholar 

  • Winterhalter, M., Helfrich, W., 1987. Effect of voltage on pores in membranes. Phys. Rev. A 36, 5874–5876.

    Article  Google Scholar 

  • Zhelev, D.V., Needham, D., 1993. Tension-stabilized pores in giant vesicles: Determination of pore-size and pore line tension. Biochim. Biophys. Acta 1147, 89–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Movileanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movileanu, L., Popescu, D., Ion, S. et al. Transbilayer Pores Induced by Thickness Fluctuations. Bull. Math. Biol. 68, 1231–1255 (2006). https://doi.org/10.1007/s11538-006-9069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9069-9

Keywords

Navigation