Skip to main content
Log in

Topological Patterns in Metazoan Evolution and Development

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Topological patterns in the development and evolution of metazoa, from sponges to chordates, are considered by means of previously elaborated methodology, with the genus of the surface used as a topological invariant. By this means metazoan morphogenesis may be represented as topological modification(s) of the epithelial surfaces of an animal body. The animal body surface is an interface between an organism and its environment, and topological transformations of the body surface during metazoan development and evolution results in better distribution of flows to and from the external medium, regarded as the source of nutrients and oxygen and the sink of excreta, so ensuring greater metabolic intensity. In sponges and some Cnidaria, the increase of this genus up to high values and the shaping of topologically complicated fractal-like systems are evident. In most Bilateria, a stable topological pattern with a through digestive tube is formed, and the subsequent topological complications of other systems can also appear. The present paper provides a topological interpretation of some developmental events through the use of well-known mathematical concepts and theorems; the relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. Thus, this methodology reveals a “topological imperative”: A certain set of topological rules that constrains and directs biological morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaerts, W., 1999. Local and global patterns during morphogenesis of the retinotectal topographical mapping in the vertebrate brain. Acta Biotheor. 47, 99–122.

    Article  Google Scholar 

  • Arnold, V.I., 1992. Ordinary Differential Equations. Springer Textbook, 3rd edition. Springer-Verlag, New York.

  • Atiyah, M., 2002. Mathematics in the 20th century. Bull. Lond. Math. Soc. 34, 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Blazis, D.E.J., 2002. Introduction. The limits to self-organization in biological systems. Biol. Bull. 202, 245–246.

    Google Scholar 

  • Bourbaki, N., 1948. L`architecture de mathematiques. La mathematique ou les mathematiques? Les Grands Courants de la Pensée Mathematiques, Cahiers du Sud, Paris, pp. 35–47.

  • Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E., 2001. Self-Organization in Biological Systems. Princeton University Press, Princeton.

    Google Scholar 

  • Child, C.M., 1941. Patterns and Problems of Development. University of Chicago Press, Chicago.

    Google Scholar 

  • Chernyshev, A.V., Isaeva, V.V., 2002. Formation of chaotic patterns of the gastrovascular system in the ontogenesis of the medusa Aurelia aurita. Russian J. Mar. Biol. 28, 347–351.

    Article  Google Scholar 

  • Chin-Sang, I.D., Chisholm, A.D., 2000. Form of the worm: Genetics of epidermal morphogenesis in C. elegans. Trends Genet. 16, 544–551.

    Article  Google Scholar 

  • Collins, A.G., Valentine, J.W., 2001. Defining phyla: Evolutionary pathways to metazoan body plan. Evol. Dev. 3, 432–442.

    Article  Google Scholar 

  • Crick, F.H.C., 1976. Linking numbers and nucleosomes. Proc. Natl. Acad. Sci. USA 75, 2639–2643.

    Article  MathSciNet  Google Scholar 

  • Damiani, G., 1994. Evolutionary meaning, functions and morphogenesis of branching structures in biology. In: Nonnenmacher, T.F., et al. (Eds.), Fractals in Biology and Medicine. Birkhäuser Verlag, Basel, pp. 104–115.

  • D'Arcy Thompson, W., 1917. On Growth and Form, 2nd edition (1942). Cambridge University Press, Cambridge.

  • Drasdo, D., Forgacs, G., 2000. Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev. Dyn. 219, 182–191.

    Article  Google Scholar 

  • Driesch, H., 1894. Analytische Theorie der Organischen Entwicklung. Verlag von Engelman, Leipzig.

    Google Scholar 

  • Dubertret, B., Rivier, N., 1997. The renewal of the epidermis: A topological mechanism. Biophys. J. 73, 38–44.

    Article  Google Scholar 

  • Dubrovin, B.A., Novikov, S.P., Fomenko, A.T., 1990. Modern Geometry–Methods and Applications, Graduate Texts in Mathematics, vol. 124. Part III: Introduction to Homotopy Theory. Springer-Verlag, New York.

    Google Scholar 

  • Dubrovin, B.A., Novikov, S.P., Fomenko, A.T., 1992. Modern Geometry–Methods and Applications, Graduate Texts in Mathematics, vol. 93, 2nd edition. Part I: The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, New York.

  • Dubrovin, B.A., Fomenko, A.T., Novikov, S.P., 1995. Modern Geometry–Methods and Applications, Graduate Texts in Mathematics, vol. 104. Part II: The Geometry and Topology of Manifolds. Springer-Verlag, New York.

    Google Scholar 

  • Duvdevani-Bar, S., Segel, L., 1994. On topological simulations in developmental biology. J. Theor. Biol. 166, 33–50.

    Article  Google Scholar 

  • Edelman, G.M., 1988. Topobiology. An Introduction to Molecular Embryology. Basic Books, New York.

    Google Scholar 

  • Ferrier, D.E.K., Holland, P.W.H., 2001. Sipunculan ParaHox genes. Evol. Dev. 3, 263–270.

    Article  Google Scholar 

  • Gilbert, S.F., 1991. Developmental Biology. Sinauer Assoc. Inc. Publ., Sunderland.

    Google Scholar 

  • Goldberger, A.L., Rigney, D.R., West, B.J., 1990. Chaos and fractals in human physiology. Sci. Am. 262, 43–49.

    Article  Google Scholar 

  • Goldenfeld, N., Kadanoff, L.P., 1999. Simple lessons from complexity. Science 284, 87–89.

    Article  Google Scholar 

  • Gong, Y.M., Si, Y.L., 2002. Classification and evolution of metazoan traces at a topological level. Lethaia 35, 263–274.

    Article  Google Scholar 

  • Gurwitsch, A.G., 1922. Über den Begriff des embryonalen Feldes. W. Roux' Archiv für Entwicklungsmechanik der Organismen 52, 383–415.

    Article  Google Scholar 

  • Hiiragi, T., Solter, D., 2004. First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430, 360–364.

    Article  Google Scholar 

  • Ingber, D.E., 2005. Mechanical control of tissue growth: Function follows form. Proc. Natl. Acad. Sci. USA 102, 11571–11572.

    Article  Google Scholar 

  • Isaeva, V.V., 2005. Personal page. http://chaos.dvo.ru/isaeva-index.htm.

  • Jockusch, H., Dress, A., 2003. From sphere to torus: A topological view of the metazoan body plan. Bull. Math. Biol. 65, 57–65.

    Article  Google Scholar 

  • Jockusch, H., Dress, A., 2004. Letter to the editor. Bull. Math. Biol. 66, 1455.

    Google Scholar 

  • Knoll, A.H., Carroll, S.B., 1999. Early animal evolution: Emerging view from comparative biology and geology. Science 284, 2129–2136.

    Article  Google Scholar 

  • Listing, I.B., 1847. Vorstudien zur Topologie. Göttingen Studien, Universität Göttingen, Göttingen, pp. 811–875.

  • Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. Freeman, New York.

    Google Scholar 

  • Maresin, V.M., Presnov, E.V., 1985. Topological approach to embryogenesis. J. Theor. Biol. 114, 387–398.

    MathSciNet  Google Scholar 

  • Meinhardt, H., 1982. Models of Biological Pattern Formation. Academic Press, London.

    Google Scholar 

  • Milnor, J., 1963. Morse Theory. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Murray, J.D., 2003. Mathematical Biology, 3rd edition. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Needham, J., 1936. Order and Life. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nelson, C.M., Jean, R.P., Tan, J.L., Liu, W.F., Sniadecki, N.J., Spector, A.A., Chen, C.S., 2005. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102, 11594–11599.

    Article  Google Scholar 

  • Nuccitelli, R., 1984. The involvement of transcellular ion currents and electric fields in pattern formation. In: Malacinski, G.M., Bryant, S.V. (Eds.), Pattern Formation. A Primer in Developmental Biology. MacMillan, London, pp. 23–46.

    Google Scholar 

  • Nüsslein-Volhard, C., 1991. Determination of the embryonic axes of Drosophila. Development (Suppl. 1), 1–10.

  • Petersen, P., 1999. Aspects of global Riemannian geometry. Bull. Am. Math. Soc. 36, 297–344.

    Article  MATH  Google Scholar 

  • Peterson, K.J., Eernisse, D.J., 2001. Animal phylogeny and the ancestry of bilaterians: Inference from morphology and 18S rDNA gene sequences. Evol. Dev. 3, 170–205.

    Article  Google Scholar 

  • Presnov, E.V., 1982. Classification of biological shapes. In: Zotin, A.I., Presnov, E.V. (Eds.), Mathematical Developmental Biology. Nauka Publishers, Moscow, pp. 126–135 (in Russian).

  • Presnov, E.V., Isaeva, V.V., 1990. Positional information as symmetry of morphogenetic fields. Forma 5, 59–61.

    Google Scholar 

  • Presnov, E.V., Isaeva, V.V., 1991. Local and global aspects of biological morphogenesis. Speculat. Sci. Tech. 14, 68–75.

    Google Scholar 

  • Presnov, E., Isaeva, V., 1996. Topological classification: Onto- and phylogenesis. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 27, 89–94.

    Google Scholar 

  • Presnov, E.V., Isaeva, V.V., 2004. Topological models in developmental and evolutionary biology. In: Jockusch, H., Dress, A. (Eds.), Presentation for “Workshop on Topology and Morphogenesis of Biological Systems” 6th and 7th December 2004, Bielefeld University. http://chaos.dvo.ru/isaeva-index.htm.

  • Presnov, E.V., Malyghin, S.N., Isaeva, V.V., 1988. Topological and thermodynamic structures of morphogenesis. In: Lamprecht, I., Zotin, A.I. (Eds.), Thermodynamics and Pattern Formation in Biology. Walter de Gruyter, Berlin, pp. 337–370.

    Google Scholar 

  • Pyshnov, M.B., 1980. Topological solution for cell proliferation in intestinal crypt. 1. Elastic growth without cell loss. J. Theor. Biol. 87, 189–200.

    Article  Google Scholar 

  • Rieger, R., Ladurner, P., 2001. Searching for the stem species of the Bilateria. Belgian J. Zool. 131(Suppl. 1), 27–34.

    Google Scholar 

  • Sará, M., 1999. New perspectives on the role of constraints in evolution. Rivista Biologica/ Biological Forum 92, 29–52.

    Google Scholar 

  • Schatten, G., Donovan, P., 2004. Embryology plane talk. Nature 430, 301–302.

    Article  Google Scholar 

  • Siegel, J.S., 2004. Chemical topology and interlocking molecules. Science 304, 1256–1257.

    Article  Google Scholar 

  • Spemann, H., 1938. Embryonic Development and Induction. Yale University Press, New Haven.

    Google Scholar 

  • Stadler, B.M.R., Stadler, P.F., Wagner, G.P., Fontana, W., 2001. The topology of possible: Formal spaces underlying patterns of evolutionary change. J. Theor. Biol. 213, 241–274.

    Article  MathSciNet  Google Scholar 

  • Thom, R., 1969. Topological models in biology. Topology 8, 313–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Thom, R., 1996. Qualitative and quantitative in evolutionary theory with some thoughts on Aristotelian biology. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 27, 115–117.

    Google Scholar 

  • Thomas, R.D.K., Reif, W.E., 1993. The skeleton space: A finite set of organic design. Evolution 47, 341–359.

    Article  Google Scholar 

  • Waddington, C.H., 1940. Organisers and Genes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wasserman, S.A., Cozzarelli, N.R., 1986. Biochemical topology: Application to DNA recombination and replication. Science 232, 951–960.

    Article  Google Scholar 

  • West, G.B., Brown, J.H., Enquist, B.J., 1999. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Isaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaeva, V., Presnov, E. & Chernyshev, A. Topological Patterns in Metazoan Evolution and Development. Bull. Math. Biol. 68, 2053–2067 (2006). https://doi.org/10.1007/s11538-006-9063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9063-2

Keywords

Navigation