Skip to main content
Log in

Integrin activation—the importance of a positive feedback

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Integrins mediate cell adhesion and are essential receptors for the development and functioning of multicellular organisms. Integrin activation is known to require both ligand and talin binding and to correlate with cluster formation but the activation mechanism and precise roles of these processes are not yet resolved. Here mathematical modeling, with known experimental parameters, is used to show that the binding of a stabilizing factor, such as talin, is alone insufficient to enable ligand-dependent integrin activation for all observed conditions; an additional positive feedback is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias-Salgado, E.G., Lizano, S., Sarkar, S., Brugge, J.S., Ginsberg, M.H., Shattil, S.J., 2003. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc. Natl. Acad Sci. USA 100(23), 13298–13302.

    Article  Google Scholar 

  • Bell, G., 1978. Models for the specific adhesion of cells to cells. Science 200, 618–627.

    Article  Google Scholar 

  • Brown, N.H., Gregory, S.L., Rickoll, W.L., Fessler, L.I., Prout, M., White, R.A.H., Fristrom, J.W., 2002. Talin is essential for integrin function in Drosophila. Dev. Cell 3(4), 569–579.

    Article  Google Scholar 

  • Campbell, I.D., Ginsberg, M.H., 2004. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29(8), 429–435.

    Article  Google Scholar 

  • Carman, C.V., Springer, T.A., 2003. Integrin avidity regulation: Are changes in affinity and conformation underemphasized. Curr. Opin. Cell. Biol. 15(5), 547–556.

    Article  Google Scholar 

  • de Pereda, J.M., Wegener, K.L., Santelli, E., Bate, N., Ginsberg, M.H., Critchley, D.R., Campbell, I.D., Liddington, R.C., 2005. Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions. J. Biol. Chem. 280(9), 8381–8386.

    Article  Google Scholar 

  • Di Paolo, G., Pellegrini, L., Letinic, K., Cestra, G., Zoncu, R., Voronov, S., Chang, S., Guo, J., Wenk, M.R., De Camilli, P., 2002. Recruitment and regulation of phosphatidylmositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 420(6911), 85–89.

    Article  Google Scholar 

  • Dustin, M.L., Ferguson, L.M., Chan, P.Y., Springer, T.A., Golan, D.E., 1996. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J. Cell Biol. 132(3), 465–474.

    Article  Google Scholar 

  • Faull, R.J., Kovach, N.L., Harlan, J.M., Ginsberg, M.H., 1993. Affinity modulation of integrin alpha5beta1: Regulation of the functional response by soluble fibronectin. J. Cell Biol. 121(1), 155–162.

    Article  Google Scholar 

  • Garcia-Alvarez, B., de Pereda, J.M., Calderwood, D.A., Ulmer, T.S., Critchley, D., Campbell, I.D., Ginsberg, M.H., Liddington, R.C., 2003. Structural determinants of integrin recognition by talin. Mol. Cell 11(1), 49–58.

    Article  Google Scholar 

  • Horwitz, R., Webb, D., 2003. Cell migration. Curr. Biol. 13(19), 756–759.

    Article  Google Scholar 

  • Hynes, R.O., 2002. Integrins: Bidirectional, allosteric signaling machines. Cell 110(6), 673–687.

    Article  Google Scholar 

  • Irvine, D.J., Hue, K.-A., Mayes, A.M., Griffith, L.G., 2002. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys. J. 82(1 Pt 1), 120–132.

    Google Scholar 

  • Kuo, S.C., Lauffenburger, D.A., 1993. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys. J. 65(5), 2191–2200.

    Google Scholar 

  • Li, R., Mitra, N., Gratkowski, H., Vilaire, G., Litvinov, R., Nagasami, C., Weisel, J.W., Lear, J.D., DeGrado, W.F., Bennett, J.S., 2003. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 300(5620), 795–798.

    Article  Google Scholar 

  • Ling, K., Doughman, R.L., Firestone, A.J., Bunce, M.W., Anderson, R.A., 2002. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420(6911), 89–93.

    Article  Google Scholar 

  • Martel, V., Racaud-Sultan, C., Dupe, S., Marie, C., Paulhe, F., Galmiche, A., Block, M.R., Albiges-Rizo, C., 2001. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides, J. Biol. Chem. 276(24), 21217–21227.

    Article  Google Scholar 

  • Moy, V.T., Jiao, Y., Hillman, T., Lehmann, H., Sano, T., 1999. Adhesion energy of receptor-mediated interaction measured by elastic deformation. Biophys. J. 76(3), 1632–1638.

    Article  Google Scholar 

  • Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F., 1997. Integrin–ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540.

    Article  Google Scholar 

  • Suehiro, K., Gailit, J., Plow, E.F., 1997. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J. Biol. Chem. 272(8), 5360–5366.

    Article  Google Scholar 

  • Tadokoro, S., Shattil, S.J., Eto, K., Tai, V., Liddington, R.C., de Pereda, J.M., Ginsberg, M.H., Calderwood, D.A., 2003. Talin binding to integrin beta tails: A final common step in integrin activation. Science 302(5642), 103–106.

    Article  Google Scholar 

  • Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., Hynes, R.O., 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46(2), 271–282.

    Article  Google Scholar 

  • van Kampen, N., 1992. Stochastic Processes in Physics and Chemistry. Elsevier Science Publishers.

  • Vitte, J., Benoliel A.-M., Eymeric, P., Bongrand, P., Pierres, A., 2004. Beta-1 integrin-mediated adhesion may be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering. Biophys. J. 86(6), 4059–4074.

    Article  Google Scholar 

  • Ward, M.D., Hammer, D.A., 1994. Focal contact assembly through cytoskeletal polymerization: Steady state analysis. J. Math. Biol. 32(7), 677–704.

    Article  MATH  Google Scholar 

  • Wiseman, P., Brown, C., Webb, D., Hebert, B., Johnson, N., Squier, J., Ellisman, M., Horwitz, A., 2004. Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy. J. Cell Sci. 117(Pt 23), 5521–5534.

    Article  Google Scholar 

  • Zamir, E., Geiger, B., 2001. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114(Pt 20), 3583–3590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Iber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iber, D., Campbell, I.D. Integrin activation—the importance of a positive feedback. Bull. Math. Biol. 68, 945–956 (2006). https://doi.org/10.1007/s11538-005-9049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9049-5

Keywords

Navigation