Skip to main content

Advertisement

Log in

Modeling Brain Energy Metabolism and Function: A Multiparametric Monitoring Approach

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical modeling of brain function is an important tool needed for a better understanding of experimental results and clinical situations. In the present study, we are constructing and testing a mathematical model capable of simulating changes in brain energy metabolism that develop in real time under various pathophysiological conditions. The model incorporates the following parameters: cerebral blood flow, partial oxygen pressure, mitochondrial NADH redox state, and extracellular potassium. Accordingly, all the model variables are only time dependent (`point-model' approach). Numerical runs demonstrate the ability of the model to mimic pathological conditions, such as complete and partial ischemia, cortical spreading depression under normoxic and partial ischemic conditions. They also show that, when properly tuned, a model of this type permits the monitoring of only one or two crucial variables and the computation of the remaining variables in real time during clinical or experimental procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, J.E., 1998. Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities. Biotechnol. Prog. 14, 8–20.

    Article  PubMed  Google Scholar 

  • Barbiro, E., Zurovsky, Y., Mayevsky, A., 1998. Real time monitoring of rat liver energy state during ischemia. Microvasc. Res. 56, 253–260.

    Article  PubMed  Google Scholar 

  • Bolognese, P., Miller, J.I., Heger, I.M., Milhorat, T.H., 1993. Laser-Doppler flowmetry in neurosurgery. J. Neurosurg. Anesthesiol. 5, 151–158.

    PubMed  Google Scholar 

  • Chance, B., Oshino, N., Sugano, T., Mayevsky, A., 1973. Basic principles of tissue oxygen determination from mitochondrial signals. In: Advances in Experimental Medicine and Biology. Plenum, New York, pp. 239–244.

  • Erecinska, M., Silver, I.A., 1989. ATP and brain function. J. CBF Metab. 9, 2–19.

    Google Scholar 

  • Friedli, C.M., Sclarsky, D.S., Mayevsky, A., 1982. Multiprobe monitoring of ionic, metabolic and electrical activities in the awake brain. Am. J. Physiol. 243, R462–R469.

    PubMed  Google Scholar 

  • Gershenfeld, N.A., 1999. The Nature of MathematicalModeling. Cambridge: Cambridge University Press.

  • Gombert, A., Nielsen, J., 2000. Mathematical modelling of metabolism. Curr. Opin Biotechnol. 11: 180–186.

    Google Scholar 

  • Haberl, R.L., Heizer, M.L., Marmarou, A., Ellis, E.F., 1989. Laser Doppler assessment of brain microcirculation: Effect of systemic alterations. Am. J. Physiol. 256, H1247–H1254.

    PubMed  Google Scholar 

  • Haberl, R.L., Villringer, A., Dirnagl, U., 1993. Applicability of laser-Doppler flowmetry for cerebral blood flow monitoring in neurological intensive care. Acta Neurochir. Suppl. (Wien) 59, 64–68.

    Google Scholar 

  • Hatzimanikatis, V., Floudas, C., Bailey, J., 1995. A mathematical model for the G1/S transition of the mamalian cell cycle. Biotechnol. Lett. 17, 669–674.

    Article  Google Scholar 

  • Hudetz, A. G., 1999. Mathematical model of oxygen transport in the cerebral cortex. Brain Res. 817, 75–83.

    Article  PubMed  Google Scholar 

  • Kraut, A., Barbiro-Michaely, E., Zurovsky, Y., Mayevsky, A., 2003. Multiorgan monitoring of hemodynamic and mitochondrial responses to anoxia and cardiac arrest in the rat. Adv. Exp. Med. Biol. 510, 299–304.

    PubMed  Google Scholar 

  • Mayevsky, A., Manor, T., Pevzner, E., Deutsch, A., Etziony, R., Dekel, N., Jaronkin, A., 2004. Tissue spectroscope: a new in vivo approach to monitor tissue vitality in real time. J. Biomed. Optics. 9, 1028–1045.

    Google Scholar 

  • Mayevsky, A., 1983a. Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In: Baldy, M., Moulinier, D.H., Ingvar, D.H., Meldrum, B.S. (Eds.), Proceedings of the First International Congress of Cerebral Blood Flow, Metabolism and Epilepsy. John Libbey, pp. 263–270. London, England.

  • Mayevsky, A., 1983b. Multiparameter monitoring of the awake brain under hyperbaric oxygenation. J. Appl. Physiol. 54, 740–748.

    Google Scholar 

  • Mayevsky, A., 1984. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7, 49–68.

    Article  Google Scholar 

  • Mayevsky, A., 1990. Level of ischemia and brain functions in the Mongolian gerbil in vivo. Brain Res. 524, 1–9.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., 1992. Cerebral blood flow and brain mitochondrial redox state responses to various perturbations in gerbils. Adv. Exp. Med. Biol. 317, 707–716.

    PubMed  Google Scholar 

  • Mayevsky, A., 1993. Biochemical and physiological activities of the brain as in vivo markers of brain pathology. In: Bernstein, E.F., Callow, A.D., Nicolaides, A.N., Shifrin, E.G. (Eds.), Cerebral, Revascularization. Med-Orion, pp. 51–69. London, England.

  • Mayevsky, A., Chance, B., 1974. Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res. 65, 529–533.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., Chance, B., 1975. Metabolic responses of the awake cerebral cortex to anoxia, hypoxia, spreading depression and epileptiform activity. Brain Res. 98, 149–165.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., Chance, B., 1982. Intracellular oxidation reduction state measured in situ by a multichannel fiber-optic-surface fluorometer. Science 217, 537–540.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., Doron, A., Manor, T., Meilin, S., Zarchin, N., Ouaknine, G.E., 1996. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 740, 268–274.

    Article  PubMed  Google Scholar 

  • Mayevsky, A., Manor, T., Pevzner, E., Deutsch, A., Etziony, R., Dekel, N., 2002. Real-time optical monitoring of tissue vitality in vivo. SPIE 4616, 30–39.

    Article  Google Scholar 

  • Mayevsky, A., Meilin, S., Manor, T., Ornstein, E., Zarchin, N., Sonn, J., 1998. Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurol. Res. 20, S76–S80.

    PubMed  Google Scholar 

  • Mayevsky, A., Sclarsky, D.S., 1983. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. In: Oxygen Transport to Tissue, vol. IV. Plenum, New York, pp. 129–141.

  • Mayevsky, A., Weiss, H.R., 1991. Cerebral blood flow and oxygen consumption in cortical spreading depression. J. CBF Metab. 11, 829–836.

    Google Scholar 

  • Mayevsky, A., Zarchin, N., Tannenbaum, B., 1984. Brain responses to experimental oxygen deficiency in the Mongolian gerbil. In: Bruley, D., Bicher, H.I., Reneau, D. (Eds.), Oxygen Transport to Tissue, vol. VI. Plenum, New York, pp. 191–202.

  • Meilin, S., Zarchin, N., Mayevsky, A., 1999. Inter-relation between hemodynamic, metabolic, ionic and electrical activities during ischemia and reperfusion in the gerbil brain. Neurol. Res. 21, 699–704.

    PubMed  Google Scholar 

  • Pevzner, E., Deutsch, A., Manor, T., Dekel, N., Etziony, R., Derzy, I., Razon, N., Mayevsky, A., 2003. Real-time multiparametric spectroscopy as a practical tool for evaluation of tissue vitality in vivo. In: Vo-Dinh, T., Grundfest, W.S., Benaron, D.A., Cohn, G.G. (Eds.), Advances Biomedical and Clinical Diagnostic Systems, Proceedings of the SPIE, pp. 171–182. SPIE - The International Society for optical Engineering, Washington, D.C., USA.

  • Reggia, J. A., Ruppin, E., Berndt, R.S., 1997. Computer modeling: A new approach to the investigation of disease. MD Comput. 14, 160–164.

    PubMed  Google Scholar 

  • Revett, K., Ruppin, E., Goodall, S., Reggia, J.A., 1998. Spreading depression in focal ischemia: A computational study. J. CBF Metab. 18, 998–1007.

    Google Scholar 

  • Ruppin, E., Ofer, E., Reggia, J.A., Revett, K., Goodall, S., 1999. Pathogenic mechanisms in ischemic damage: A computational study. Comput. Biol. Med. 29, 39–59.

    Article  PubMed  Google Scholar 

  • Sonn, J., Mayevsky, A., Acad, B., Guggenheimer, E., Kedem, J., 1982. Effect of local ischemia on the myocardial oxygen balance and its response to heart rate elevation. Q. J. Exp. Physiol. 67, 335–348.

    PubMed  Google Scholar 

  • Wadhwani, K. C., Rapoport, S.I., 1990. Blood flow in the central and peripheral nervous systems. In: Shepherd, A.P., Oberg, P.A. (Eds.), Laser Doppler Blood Flowmetry. Kluwer Academic, Boston, pp. 265–304.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Mayevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vatov, L., Kizner, Z., Ruppin, E. et al. Modeling Brain Energy Metabolism and Function: A Multiparametric Monitoring Approach. Bull. Math. Biol. 68, 275–291 (2006). https://doi.org/10.1007/s11538-005-9008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9008-1

Keywords

Navigation