Skip to main content
Log in

A sufficient condition for a rational differential operator to generate an integrable system

  • Original Paper
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

For a rational differential operator \({L=AB^{-1}}\), the Lenard–Magri scheme of integrability is a sequence of functions \({F_n, n \geq 0}\), such that (1) \({B(F_{n+1})=A(F_n)}\) for all \({n \geq 0}\) and (2) the functions \({B(F_n)}\) pairwise commute. We show that, assuming that property (1) holds and that the set of differential orders of \({B(F_n)}\) is unbounded, property (2) holds if and only if L belongs to a class of rational operators that we call integrable. If we assume moreover that the rational operator L is weakly non-local and preserves a certain splitting of the algebra of functions into even and odd parts, we show that one can always find such a sequence (F n ) starting from any function in Ker B. This result gives some insight in the mechanism of recursion operators, which encode the hierarchies of the corresponding integrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpentier S., De Sole A., Kac V.G.: Some algebraic properties of differential operators. J. Math. Phys. 53, 063501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpentier S., De Sole A., Kac V.G.: Some remarks on non-commutative principal ideal rings. C. R. Math. Acad. Sci. Paris 351, 5–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpentier S., De Sole A., Kac V.G.: Rational matrix pseudodifferential operators. Selecta Math. (N.S.) 20, 403–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demskoi D.K., Sokolov V.V.: On recursion operators for elliptic models. Nonlinearity 21, 1253–1264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Sole A., Kac V.G.: Non-local Poisson structures and applications to the theory of integrable systems. Jpn. J. Math. 8, 233–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Sole A., Kac V.G., Turhan R.: On integrability of some bi-Hamiltonian two field systems of partial differential equations. J. Math. Phys. 56, 051503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gel’fand I.M., Dikii L.A.: A Lie algebra structure in a formal variational calculation. Funct. Anal. Appl. 10, 16–22 (1976)

    Article  MATH  Google Scholar 

  9. Enriquez B., Rubtsov V., Orlov A.: Higher Hamiltonian structures (the sl 2 case). JETP Lett. 58, 658–664 (1993)

    MathSciNet  Google Scholar 

  10. Ibragimov N.H., Shabat A.B.: Evolution equations with a nontrivial Lie-Bäcklund group. Funktsional. Anal. i Prilozhen. 14(no. 1), 25–36 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maltsev A.Y., Novikov S.P.: On the local systems Hamiltonian in the weakly non-local Poisson brackets. Phys. D 156, 53–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.V. Mikhailov and V.V. Sokolov, Symmetries of differential equations and the problem of integrability, In: Integrability, (ed. A.V. Mikhailov), Lecture Notes in Phys., 767, Springer-Verlag, 2009, pp. 19–88.

  13. A.V. Mikhailov, A.B. Shabat and V.V. Sokolov, The symmetry approach to classification of integrable equations, In: What is Integrability?, (ed. V.E. Zakharov), Springer-Verlag, 1991, pp. 115–184.

  14. P.J. Olver, Applications of Lie Groups to Differential Equations. Second ed., Springer-Verlag, 1993.

  15. V.V. Sokolov and A.B. Shabat, Classification of integrable evolution equations, In: Mathematical Physics Reviews, (ed. S.P. Novikov), Soviet Sci. Rev. Sect. C Math. Phys. Rev., 4, Harwood Academic Publ., Chur, 1984, pp. 221–280.

  16. J.A. Sanders and J.P. Wang, Number theory and the symmetry classification of integrable systems, In: Integrability, (ed. A.V. Mikhailov), Lecture Notes in Phys., 767, Springer-Verlag, 2009, pp. 89–118.

  17. Wang J.P.: A list of 1 + 1 dimensional integrable equations and their properties. J. Nonlinear Math. Phys. 9(suppl. 1), 213–233 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Carpentier.

Additional information

Communicated by: Yasuyuki Kawahigashi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpentier, S. A sufficient condition for a rational differential operator to generate an integrable system. Jpn. J. Math. 12, 33–89 (2017). https://doi.org/10.1007/s11537-016-1619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-016-1619-9

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation