Japanese Journal of Mathematics

, Volume 11, Issue 1, pp 113–149

Riemann–Hilbert correspondence for irregular holonomic \({\mathscr{D}}\)-modules

Takagi Lectures

DOI: 10.1007/s11537-016-1564-7

Cite this article as:
Kashiwara, M. Jpn. J. Math. (2016) 11: 113. doi:10.1007/s11537-016-1564-7


This is a survey paper on the Riemann–Hilbert correspondence on (irregular) holonomic \({\mathscr{D}}\)-modules, based on the 16th Takagi Lectures (2015/11/28). In this paper, we use subanalytic sheaves, an analogous notion to the one of indsheaves.

Keywords and phrases

irregular Riemann–Hilbert problem irregular holonomic \({{\mathscr{D}}}\)-modules ind-sheaves subanalytic sheaves Stokes phenomenon 

Mathematics Subject Classification (2010)

32C38 35A27 32S60 

Copyright information

© The Mathematical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan