Skip to main content
Log in

Mackey’s theory of \({\tau}\)-conjugate representations for finite groups

  • Original Article
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

The aim of the present paper is to expose two contributions of Mackey, together with a more recent result of Kawanaka and Matsuyama, generalized by Bump and Ginzburg, on the representation theory of a finite group equipped with an involutory anti-automorphism (e.g. the anti-automorphism \({g \mapsto g^{-1}}\)). Mackey’s first contribution is a detailed version of the so-called Gelfand criterion for weakly symmetric Gelfand pairs. Mackey’s second contribution is a characterization of simply reducible groups (a notion introduced by Wigner). The other result is a twisted version of the Frobenius–Schur theorem, where “twisted” refers to the above-mentioned involutory anti-automorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adin R.M., Postnikov A., Roichman Y.: A Gelfand model for wreath products. Israel J. Math. 179, 381–402 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baddeley R.W.: Models and involution models for wreath products and certain Weyl groups. J. London Math. Soc. (2) 44, 55–74 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bannai and T. Ito, Algebraic Combinatorics. I. Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.

  4. Bannai E., Kawanaka N., Song S.-Y.: The character table of the Hecke algebra \({{\fancyscript H}({\rm GL}_{2n}(\mathbb{F}_q),{\rm Sp}_{2n}(\mathbb{F}_q))}\) . J. Algebra 129, 320–366 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bannai and H. Tanaka, Appendix: On some Gelfand pairs and commutative association schemes, Jpn. J. Math., 10 (2015). doi:10.1007/s11537-014-1391-7

  6. I.N. Bernstein, I.M. Gelfand and S.I. Gelfand, Models of representations of compact Lie groups, Functional Anal. Prilozh., 9, no. 4 (1975), 61–62.

  7. D. Bump, Lie Groups, Grad. Texts in Math., 225, Springer-Verlag, 2004.

  8. Butler P.H.: Point Group Symmetry Applications. Methods and Tables. Plenum Press, New York-London (1981)

    Book  MATH  Google Scholar 

  9. Butler P.H., King R.C.: The symmetric group: characters, products and plethysms. J. Mathematical Phys. 14, 1176–1183 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Butler P.H., King R.C.: Symmetrized Kronecker products of group representations. Canad. J. Math. 26, 328–339 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bump D., Ginzburg D.: Generalized Frobenius–Schur numbers. J. Algebra 278, 294–313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ceccherini-Silberstein T., Scarabotti F., Tolli F.: Trees, wreath products and finite Gelfand pairs. Adv. Math. 206, 503–537 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Harmonic Analysis on Finite Groups. Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Stud. Adv. Math., 108, Cambridge Univ. Press, Cambridge, 2008.

  14. Ceccherini-Silberstein T., Machì A., Scarabotti F., Tolli F.: Induced representation and Mackey theory. J. Math. Sci. (N. Y.) 156, 11–28 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ceccherini-Silberstein T., Scarabotti F., Tolli F.: Clifford theory and applications. J. Math. Sci. (N. Y.) 156, 29–43 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation Theory of the Symmetric Groups, In: The Okounkov–Vershik Approach, Character Formulas, and Partition Algebras, Cambridge Stud. Adv. Math., 121, Cambridge Univ. Press, Cambridge, 2010.

  17. T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Multiplicity-free induced representations, in preparation.

  18. T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Mackey’s criterion for subgroup restriction of Kronecker products and harmonic analysis on Clifford groups, preprint, arXiv:1401.6767; Tohoku Math. J. (2), in press.

  19. Clifford W.K.: Mathematical Papers. Macmillan, London (1882)

    Google Scholar 

  20. Derome J.-R.: Symmetry properties of the 3j-symbols for an arbitrary group. J. Mathematical Phys. 7, 612–615 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes Monogr. Ser., Institute of Mathematical Statistics, Hayward, CA, 1988.

  22. Dirac P.A.M.: The quantum theory of the electron. Proc. Roy. Soc. Ser. A 117, 610–624 (1928)

    Article  MATH  Google Scholar 

  23. Eckmann B.: Gruppentheoretischer Beweis des Satzes von Hurwitz–Radon über die Komposition quadratischer Formen. Comment. Math. Helv. 15, 358–366 (1943)

    Article  MATH  Google Scholar 

  24. Eddington A.S.: On sets of anticommuting matrices. J. London Math. Soc. 7, 58–68 (1932)

    Article  MathSciNet  Google Scholar 

  25. Eddington A.S.: On sets of anticommuting matrices. Part II: The foundations of E-numbers. J. London Math. Soc. 8, 142–152 (1933)

    Google Scholar 

  26. Esper N., Kerber A.: Permutrization of representations with applications to simple-phase groups and the enumeration of roots in groups and of conjugacy classes which are invariant under power maps. Mitt. Math. Sem. Giessen 121, 181–200 (1976)

    MathSciNet  Google Scholar 

  27. P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob and E. Yudovina, Introduction to Representation Theory. With Historical Interludes by Slava Gerovitch, Stud. Math. Libr., 59, Amer. Math. Soc., Providence, RI, 2011.

  28. Frobenius G., Schur I.: Über die reellen Darstellungen der endlichen Gruppen. Sitz.-Ber. Preuss. Akad. Wiss. 1906, 186–208 (1906)

    MATH  Google Scholar 

  29. A. Garsia, Gelfand pairs in finite groups, unpublished MIT manuscript, 1985.

  30. Garsia A.M., Remmel J.: Shuffles of permutations and the Kronecker product. Graphs Combin. 1, 217–263 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Garsia, N. Wallach, G. Xin and M. Zabrocki, Kronecker coefficients via symmetric functions and constant term identities, Internat. J. Algebra Comput., 22 (2012), 1250022.

  32. Gow R.: Properties of the characters of the finite general linear group related to the transpose-inverse involution. Proc. London Math. Soc. (3) 47, 493–506 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gow R.: Two multiplicity-free permutation representations of the general linear group GL(n, q 2). Math. Z. 188, 45–54 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. J.S. Griffiths, The Irreducible Tensor Method for Molecular Symmetry Groups, Dover, 2006.

  35. Gross B.H.: Some applications of Gel’fand pairs to number theory. Bull. Amer. Math. Soc. (N.S.) 24, 277–301 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, MA-London, 1962.

  37. A. Hurwitz, Über die Komposition der quadratischen Formen von beliebig vielen Variabein, Nach. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1898, 309–316, reprinted in Math. Werke II, 565–571.

  38. A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann., 88 (1923), 1–25, reprinted in Math. Werke II, 641–666.

  39. Inglis N.F.J., Liebeck M.W., Saxl J.: Multiplicity-free permutation representations of finite linear groups. Math. Z. 192, 329–337 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  40. Inglis N.F.J., Richardson R.W., Saxl J.: An explicit model for the complex representations of S n . Arch. Math. (Basel) 54, 258–259 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Inglis N.F.J., Saxl J.: An explicit model for the complex representations of the finite general linear groups. Arch. Math. (Basel) 57, 424–431 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. G.D. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl., 16, Addison-Wesley, Reading, MA, 1981.

  43. V.F.R. Jones, In and around the origin of quantum groups, In: Prospects in Mathematical Physics, Contemp. Math., 437, Amer. Math. Soc., Providence, RI, 2007, pp. 101–126.

  44. Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35, 29–64 (1934)

    Article  MathSciNet  Google Scholar 

  45. Jordan P., Wigner E.P.: Über das Paulische Äquivalenzverbot. Z. Physik 47, 631–651 (1928)

    Article  MATH  Google Scholar 

  46. Kawanaka N.: On the irreducible characters of the finite unitary groups. J. Math. Soc. Japan 29, 425–450 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kawanaka N., Matsuyama H.: A twisted version of the Frobenius–Schur indicator and multiplicity-free permutation representations. Hokkaido Math. J. 19, 495–508 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  48. L.S. Kazarin and E.I. Chankov, Finite simply reducible groups are solvable. (Russian), Mat. Sb., 201, no. 5 (2010), 27–40; translation in Sb. Math., 201 (2010), 655–668.

  49. L.S. Kazarin and V.V. Yanishevskiĭ, On finite simply reducible groups, Algebra i Analiz, 19, no. 6 (2007), 86–116; translation in St. Petersburg Math. J., 19 (2008), 931–951.

  50. Klyachko A.A.: Models for complex representations of the groups GL(n, q) and Weyl groups. Dokl. Akad. Nauk SSSR 261, 275–278 (1981)

    MathSciNet  Google Scholar 

  51. King R.C.: Branching rules for \({{GL}(N) \supset \Sigma_m}\) and the evaluation of inner plethysms. J. Mathematical Phys. 15, 258–267 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  52. A.A. Klyachko, Models for complex representations of groups GL(n, q), Mat. Sb. (N.S.), 120(162), no. 3 (1983), 371–386.

  53. A.I. Kostrikin, Introduction to Algebra. Translated from the Russian by Neal Koblitz, Universitext, Springer-Verlag, 1982.

  54. The Kourovka notebook. Unsolved problems in group theory. Sixteenth ed. Including archive of solved problems, (eds. V.D. Mazurov and E.I. Khukhro), Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2006.

  55. T.Y. Lam and T. Smith, On the Clifford–Littlewood–Eckmann groups: a new look at periodicity mod 8, In: Quadratic Forms and Real Algebraic Geometry, Corvallis, OR, 1986, Rocky Mountain J. Math., 19, Rocky Mountain Math. Consortium, Tempe, AZ, 1989, pp. 749–786.

  56. Littlewood D.E.: Note on the anticommuting matrices of eddington. J. London Math. Soc. 9, 41–50 (1934)

    Article  Google Scholar 

  57. Mackey G.W.: On induced representations of groups. Amer. J. Math. 73, 576–592 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  58. Mackey G.W.: Symmetric and anti symmetric Kronecker squares and intertwining numbers of induced representations of finite groups. Amer. J. Math. 75, 387–405 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  59. Mackey G.W.: Multiplicity free representations of finite groups. Pacific J. Math. 8, 503–510 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  60. Marberg E.: Generalized involution models for wreath products. Israel J. Math. 192, 157–195 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  61. J. McKay, Graphs, singularities, and finite groups, In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, California, 1979, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, pp. 183–186.

  62. Okounkov A., Vershik A.M.: A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2, 581–605 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Prasad D.: Trilinear forms for representations of GL(2) and local ɛ-factors. Compositio Math. 75, 1–46 (1990)

    MATH  MathSciNet  Google Scholar 

  64. Racah G.: Theory of complex spectra. I. Phys. Rev. 61, 186–197 (1942)

    Article  Google Scholar 

  65. Racah G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)

    Article  Google Scholar 

  66. Racah G.: Group theory and spectroscopy. Ergeb. Exakt. Naturwiss. 37, 28–84 (1965)

    MathSciNet  Google Scholar 

  67. Radon J.: Lineare Scharen orthogonaler matrizen. Abh. Math. Sem. Univ. Hamburg 1, 1–14 (1922)

    Article  MathSciNet  Google Scholar 

  68. F. Sasaki, M. Sekiya, T. Noro, K. Ohtsuki and Y. Osanai, Non-Relativistic Configuration Interaction Calculations for Many-Electron Atoms: ATOMCI, In: MOTECC: Modern Techniques in Computational Chemistry, (ed. E. Clementi), Chapter 3, ESCOM Science Publishers, 1991.

  69. Scarabotti F., Tolli F.: Harmonic analysis on a finite homogeneous space. Proc. Lond. Math. Soc. (3) 100, 348–376 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  70. Scarabotti F., Tolli F.: Harmonic analysis on a finite homogeneous space II: the Gelfand–Tsetlin decomposition. Forum Math. 22, 897–911 (2010)

    Article  MathSciNet  Google Scholar 

  71. F. Scarabotti and F. Tolli, Induced representations and harmonic analysis on finite groups, preprint, arXiv:1304.3366.

  72. B. Simon, Representations of Finite and Compact Groups, Grad. Stud. Math., 10, Amer. Math. Soc., Providence, RI, 1996.

  73. Strunkov S.P.: On the ordering of characters of simply reducible groups. (Russian). Mat. Zametki 31, 357–362 (1982)

    MathSciNet  Google Scholar 

  74. van Zanten A.J., de Vries E.: Criteria for groups with representations of the second kind and for simple phase groups. Canad. J. Math. 27, 528–544 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  75. A.M. Vershik and A. Okounkov, A new approach to representation theory of symmetric groups. II. (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 57–98; translation in J. Math. Sci. (N. Y.), 131 (2005), 5471–5494.

  76. Vinroot C.R.: Twisted Frobenius–Schur indicators of finite symplectic groups. J. Algebra 293, 279–311 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  77. Vinroot C.R.: Involutions acting on representations. J. Algebra 297, 50–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  78. Wigner E.P.: On representations of certain finite groups. Amer. J. Math. 63, 57–63 (1941)

    Article  MathSciNet  Google Scholar 

  79. E.P. Wigner, Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra. Expanded and improved ed. Translated from the German by J.J. Griffin, Pure and Applied Physics, 5, Academic Press, New York-London, 1959.

  80. E.P. Wigner, On the matrices which reduce the Kronecker products of representations of S.R. groups, In: Quantum Theory of Angular Momentum, (eds. L.C.Biedenharn and H.van Dam), Academic Press, New York, 1964, pp. 87–133.

  81. E.P. Wigner, On the isotropic harmonic oscillator, In: Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial Volume, (eds. F. Bloch, S.G. Cohen, A. De-Shalit, S. Sambursky and I. Talmi), North-Holland Publishing Co., Amsterdam, 1968.

  82. E.P. Wigner, Restriction of irreducible representations of groups to a subgroups, Proc. Roy. Soc. London Ser. A, 322, no. 1549 (1971), 181–189.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Ceccherini-Silberstein.

Additional information

Communicated by: Yasuyuki Kawahigashi

Dedicated to our mentors and friends Toni Machì on his 75th birthday and Pierre de la Harpe on his 70th birthday

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccherini-Silberstein, T., Scarabotti, F. & Tolli, F. Mackey’s theory of \({\tau}\)-conjugate representations for finite groups. Jpn. J. Math. 10, 43–96 (2015). https://doi.org/10.1007/s11537-014-1390-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-014-1390-8

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation