Skip to main content
Log in

Geometry as seen by string theory

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract.

This is an introductory review of the topological string theory from physicist’s perspective. I start with the definition of the theory and describe its relation to the Gromov–Witten invariants. The BCOV holomorphic anomaly equations, which generalize the Quillen anomaly formula, can be used to compute higher genus partition functions of the theory. The open/closed string duality relates the closed topological string theory to the Chern–Simons gauge theory and the random matrix model. As an application of the topological string theory, I discuss the counting of bound states of D-branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aganagic, A. Klemm, M. Marino and C. Vafa, The topological vertex, Comm. Math. Phys., 254 (2005), 425–478, arXiv:hep-th/0305132.

    Google Scholar 

  2. M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang–Mills, and non-perturbative topological strings, Nuclear Phys. B, 715 (2005), 304–348, arXiv:hepth/ 0411280.

    Google Scholar 

  3. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rep., 323 (2000), 183–386, arXiv:hep-th/9905111.

  4. P.S. Aspinwall, B.R. Greene and D.R. Morrison, Multiple mirror manifolds and topology change in string theory, Phys. Lett. B, 303 (1993), 249–259, arXiv:hep-th/9301043; Calabi–Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear Phys. B, 416 (1994), 414–480, arXiv:hep-th/9309097.

    Google Scholar 

  5. P.S. Aspinwall and D.R. Morrison, Topological field theory and rational curves, Comm. Math. Phys., 151 (1993), 245–262, arXiv:hep-th/9110048.

    Google Scholar 

  6. C. Beasley, D. Gaiotto, M. Guica, L. Huang, A. Strominger and X. Yin, Why Z BH = |Z top|2, arXiv:hep-th/0608021.

  7. K. Becker, M. Becker and A. Strominger, Fivebranes, membranes and non-perturbative string theory, Nuclear Phys. B, 456 (1995), 130–152, arXiv:hep-th/9507158.

  8. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D (3), 7 (1973), 2333–2346.

    Article  MathSciNet  Google Scholar 

  9. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B, 405 (1993), 279–304, arXiv:hep-th/9302103.

    Google Scholar 

  10. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., 165 (1994), 311–427, arXiv:hep-th/9309140.

    Google Scholar 

  11. J. de Boer, M.C.N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A Farey tail for attractor black holes, J. High Energy Phys., 2006 (2006), 024, pp. 28, arXiv:hep-th/0608059.

  12. P. Candelas, X.C. de la Ossa, P.S. Green, and L. Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 359 (1991) :21–74.

    Article  MATH  MathSciNet  Google Scholar 

  13. G.L. Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black-hole entropy, Phys. Lett. B, 451 (1999), 309–316, arXiv:hep-th/9812082.

    Google Scholar 

  14. S. Cecotti and C. Vafa, Topological–anti-topological fusion, Nuclear Phys. B, 367 (1991), 359–461.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, J. High Energy Phys., 2005 (2005), 096, pp. 90, arXiv:hep-th/0507014.

  16. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, arXiv:hepth/0702146.

  17. R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nuclear Phys. B, 644 (2002), 3–20, arXiv:hep-th/0206255; On geometry and matrix models, Nuclear Phys. B, 644 (2002), 21–39, arXiv:hep-th/0207106.

  18. R. Dijkgraaf, C. Vafa and E. Verlinde, M-theory and a topological string duality, arXiv:hepth/ 0602087.

  19. J. Distler and B.R. Greene, Some exact results on the superpotential from Calabi–Yau compactifications, Nuclear Phys. B, 309 (1988), 295–316.

    Article  MathSciNet  Google Scholar 

  20. S.K. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, In: The Geometric Universe, Oxford Univ. Press, 1998, pp. 31–47.

  21. C. Faber and R. Pandharipande, Hodge integrals and Gromov–Witten theory, arXiv: math/9810173.

  22. H. Fang, Z. Lu and K.-I. Yoshikawa, Analytic torsion for Calabi–Yau threefolds, arXiv: math/0601411.

  23. D. Gaiotto, A. Strominger and X. Yin, From AdS3/CFT2 to black holes/topological strings, J. High Energy Phys., 2007 (2007), 050, pp. 10, arXiv:hep-th/0602046.

  24. R. Gopakumar and C. Vafa, Topological gravity as large N topological gauge theory, Adv. Theor. Math. Phys., 2 (1998), 413–442, arXiv:hep-th/9802016.

  25. R. Gopakumar and C. Vafa, M-theory and topological strings. I, arXiv:hep-th/9809187.

  26. R. Gopakumar and C. Vafa, M-theory and topological strings. II, arXiv:hep-th/9812127.

  27. B.R. Greene and M.R. Plesser, Duality in Calabi–Yau moduli space, Nuclear Phys. B, 338 (1990), 15–37.

    Article  MathSciNet  Google Scholar 

  28. R.K. Gupta and A. Sen, AdS3/CFT2 to AdS2/CFT1, arXiv:0806.0053.

  29. S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett., 26 (1971), 1344–1346.

    Google Scholar 

  30. S.W. Hawking, Black hole explosions?, Nature, 248 (1974), p. 30.

  31. W. Heisenberg and W. Pauli, Zur Quantendynamik derWellenfelder, Z. Phys. A, 56 (1929), 1–61.

    Google Scholar 

  32. G. ’t Hooft, A planar diagram theory for strong interactions, Nuclear Phys. B, 72 (1974), 461–473.

    Google Scholar 

  33. M.-X. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi–Yau: modularity and boundary conditions, arXiv:hep-th/0612125.

  34. A. Iqbal, C. Vafa, N. Nekrasov and A. Okounkov, Quantum foam and topological strings, J. High Energy Phys., 2008 (2008), 011, pp. 47, arXiv:hep-th/0312022.

  35. K. Liu and P. Peng, Proof of the Labastida–Marino–Ooguri–Vafa conjecture, arXiv:0704.1526.

  36. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2 (1998), 231–252, Internat. J. Theoret. Phys., 38 (1999), 1113–1133, arXiv:hep-th/9711200.

  37. M. Marino, Chern–Simons Theory, Matrix Models, and Topological Strings, Internat. Ser. Monogr. Phys., 131, Oxford Univ. Press, 2005.

  38. D. Maulik, A. Oblomkov, A. Okounkov and R. Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric 3-folds, arXiv:0809.3976.

  39. S. Mozgovoy and M. Reineke, On the noncommutative Donaldson–Thomas invariants arising from brane tilings, arXiv:0809.0117.

  40. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J., 76 (1994), 365–416.

    Google Scholar 

  41. N. Nekrasov and A. Okounkov, Seiberg–Witten theory and random partitions, arXiv:hep-th/ 0306238.

  42. A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi–Yau and classical crystals, arXiv:hep-th/0309208.

  43. H. Ooguri, Y. Oz and Z. Yin, D-branes on Calabi–Yau spaces and their mirrors, Nuclear Phys. B, 477 (1996), 407–430, arXiv:hep-th/9606112.

    Google Scholar 

  44. H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D (3), 70 (2004), 106007, pp. 13, arXiv:hep-th/0405146.

  45. H. Ooguri and C. Vafa, Knot invariants and topological strings, Nuclear Phys. B, 577 (2000), 419–438, arXiv:hep-th/9912123.

  46. H. Ooguri and C. Vafa, Worldsheet derivation of a large N duality, Nuclear Phys. B, 641 (2002), 3–34, arXiv:hep-th/0205297.

    Google Scholar 

  47. H. Ooguri and M. Yamazaki, Crystal melting and toric Calabi–Yau manifolds, arXiv:0811.2801.

  48. J. Polchinski, Dirichlet-branes and Ramond–Ramond charges, Phys. Rev. Lett., 75 (1995), 4724–4727, arXiv:hep-th/9510017.

    Google Scholar 

  49. D.B. Ray and I.M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2), 98(1973), 154–177.

    Google Scholar 

  50. G. Segal, The definition of conformal field theory, In: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., First circulated in 1988, pp. 421–577.

  51. G. Segal, Two-dimensional conformal field theories and modular functors, In: IXth International Congress on Mathematical Physics, Swansea, 1988, Hilger, 1989, pp. 22–37.

  52. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein–Hawking entropy, Phys. Lett. B, 379 (1996), 99–104, arXiv:hep-th/9601029.

    Google Scholar 

  53. B. Szendröi, Non-commutative Donaldson–Thomas invariants and the conifold, Geom. Topol., 12 (2008), 1171–1202, arXiv:0705.3419.

  54. T. Takagi, Über eine Theorie des relativ Abel’schen Zahlkörpers, J. Coll. Sci. Imp. Univ. Tokyo, 41 (1920), 1–133.

    Google Scholar 

  55. T. Takagi, Kaiseki Gairon, Iwanami Shoten, 1983.

  56. T. Takagi, Kinsei Suugaku Shidan, Iwanami Shoten, 1995.

  57. C. Vafa, Two dimensional Yang–Mills, black holes and topological strings, arXiv:hepth/0406058.

  58. C. Vafa and E. Witten, A strong coupling test of S-duality, Nuclear Phys. B, 431 (1994), 3–77, arXiv:hep-th/9408074.

    Google Scholar 

  59. E. Witten, Noncommutative geometry and string field theory, Nuclear Phys. B, 268 (1986), 253–294.

    Google Scholar 

  60. E. Witten, Topological sigma models, Comm. Math. Phys., 118 (1988), 411–449.

    Google Scholar 

  61. E.Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys., 121 (1989), 351–399.

    Google Scholar 

  62. E. Witten, Phases of \({\mathcal{N}} = 2\) theories in two dimensions, Nuclear Phys. B, 403 (1993), 159–222, arXiv:hep-th/9301042.

  63. E. Witten, Chern–Simons gauge theory as a string theory, Prog. Math., 133 (1995), 637– 678, arXiv:hep-th/9207094.

    Google Scholar 

  64. E. Witten, Mirror manifolds and topological field theory, In: Mirror Symmetry I, (ed. S.-T. Yau), Amer. Math. Soc., 1998, pp. 121–160, arXiv:hep-th/9112056.

  65. S. Yamaguchi and S.T. Yau, Topological string partition functions as polynomials, J. High Energy Phys., 2004 (2004), 047, pp. 20, arXiv:hep-th/0406078.

  66. A. Zinger, The reduced genus-one Gromov–Witten invariants of Calabi–Yau hypersurfaces, arXiv:0705.2397.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirosi Ooguri.

Additional information

Communicated by: Hiraku Nakajima

This article is based on the 4th Takagi Lectures that the author delivered at the Kyoto University on June 21, 2008.

About this article

Cite this article

Ooguri, H. Geometry as seen by string theory. Jpn. J. Math. 4, 95–120 (2009). https://doi.org/10.1007/s11537-009-0833-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-009-0833-0

Keywords and phrases:

Mathematics Subject Classification (2000):

Navigation