Skip to main content
Log in

Exploiting microRNAs As Cancer Therapeutics

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

miRNAs are a well-studied class of non-coding RNAs, predominantly functioning to down-regulate gene expression from messenger RNA (mRNA) in a targeted manner by binding to complementary sequence on the target mRNA. Many miRNAs have been linked to the development of hallmarks of cancer. miRNAs represent valuable therapeutic targets to exploit in the search for novel cancer treatments, due to their ubiquitous expression and their ability to tightly regulate the gene expression of a whole host of genes and pathways in a single hit. The miRNA system may be harnessed for therapeutic use either through replacement of tumour suppressive miRNAs lost in cancer, or through inhibition of oncogenic miRNAs overexpressed in cancer. There is a large body of work investigating optimal systemic and localised delivery strategies, and while miRNA therapeutics show promise, it is clear that further developments to delivery strategies may be required to allow safe translation of miRNAs to the clinic. The information gleaned from miRNA signatures as biomarkers is already proving invaluable in the fight to better understand and treat individual tumours, and there is great promise to the applications of these small, but mighty molecules in the future of cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  2. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  CAS  PubMed  Google Scholar 

  4. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.

    Article  CAS  PubMed  Google Scholar 

  6. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20(5):515–24.

    Article  CAS  PubMed  Google Scholar 

  7. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  8. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–47.

    Article  PubMed  Google Scholar 

  9. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  10. Preusse M, Theis FJ, Mueller NS. miTALOS v2: Analyzing Tissue Specific microRNA Function. PLoS One. 2016;11(3):e0151771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007;27(6):2240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69(3):1221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fontana L, Sorrentino A, Condorelli G, Peschle C. Role of microRNAs in haemopoiesis, heart hypertrophy and cancer. Biochem Soc Trans. 2008;36(6):1206–10.

    Article  CAS  PubMed  Google Scholar 

  14. Pauley KM, Chan EK. MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci. 2008;1143(1):226–39.

    Article  CAS  PubMed  Google Scholar 

  15. Logue JS, Morrison DK. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012;26(7):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  17. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu H, Zhu S, Mo Y. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19(4):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, et al. microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 2009;1269:158–65.

    Article  CAS  PubMed  Google Scholar 

  20. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  CAS  PubMed  Google Scholar 

  21. Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5(3):115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280–5.

    Article  CAS  PubMed  Google Scholar 

  23. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  PubMed  CAS  Google Scholar 

  24. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med. 2012;12(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005;102(50):18081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol. 2016;49(1):5–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, et al. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012;119(5):1162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allegra D, Bilan V, Garding A, Döhner H, Stilgenbauer S, Kuchenbauer F, et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia. 2014;28(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  30. Pekarsky Y, Croce CM. Role of miR-15/16 in CLL. Cell Death Differentiation. 2015;22(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  31. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008;105(13):5166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.

    Article  CAS  PubMed  Google Scholar 

  34. Naidu S, Magee P, Garofalo M. MiRNA-based therapeutic intervention of cancer. J Hematol Oncol. 2015;8(1):1.

    Article  CAS  Google Scholar 

  35. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci. 2008;105(19):7004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Slade I, Bacchelli C, Davies H, Murray A, Abbaszadeh F, Hanks S, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48(4):273–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  38. Zarate R, Boni V, Bandres E, Garcia-Foncillas J. MiRNAs and LincRNAs: Could they be considered as biomarkers in colorectal cancer? Int J Mol Sci. 2012;13(1):840–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev. 2009;23(18):2152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  41. He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33.

    Article  CAS  PubMed  Google Scholar 

  43. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000;14(9):1021–6.

    CAS  PubMed  Google Scholar 

  44. Liang M, Yao G, Yin M, Lü M, Tian H, Liu L, et al. Transcriptional cooperation between p53 and NF-κB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;370(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  45. Leivonen S, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale A, et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 2014;8(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Liu Y, Granberg KJ, Wang Q, Moore LM, Ji P, et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene. 2015;34(13):1619–28.

    Article  CAS  PubMed  Google Scholar 

  47. Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 2012;72(21):5576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.

    Article  PubMed  CAS  Google Scholar 

  49. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22(10):1686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007;67(17):7972–6.

    Article  CAS  PubMed  Google Scholar 

  51. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, et al. Coordinated epigenetic repression of the miR‐200 family and miR‐205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327–34.

    Article  CAS  PubMed  Google Scholar 

  52. Lee J, Park Y, Choi J, Lee YY, Kim C, Choi C, et al. The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol. 2011;120(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  53. Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T, et al. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol. 2009;44(6):556–61.

    Article  CAS  PubMed  Google Scholar 

  54. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62(9):1315–26.

    Article  CAS  PubMed  Google Scholar 

  55. Humphries B, Yang C. The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget. 2015;6(9):6472–98.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chiou G, Cherng J, Hsu H, Wang M, Tsai C, Lu K, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial–mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Controlled Release. 2012;159(2):240–50.

    Article  CAS  Google Scholar 

  57. Gilam A, Conde J, Weissglas-Volkov D, Oliva N, Friedman E, Artzi N, et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun. 2016;7:12868.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Obayashi M, Yoshida M, Tsunematsu T, Ogawa I, Sasahira T, Kuniyasu H, et al. microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer. Oncotarget. 2016;7(7):8223–39.

    PubMed  PubMed Central  Google Scholar 

  59. Lin K, Ye H, Han B, Wang W, Wei P, He B, et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene. 2015.

  60. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2011;1812(5):592–601.

    Article  CAS  Google Scholar 

  61. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008;68(8):2773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–24.

    Article  CAS  PubMed  Google Scholar 

  65. Micro-RNA profiling in kidney and bladder cancers. Urologic Oncology: Seminars and Original Investigations: Elsevier; 2007.

  66. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713–22.

    Article  CAS  PubMed  Google Scholar 

  67. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, et al. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res. 2008;68(24):10105–12.

    Article  CAS  PubMed  Google Scholar 

  68. Berman M, Mattheolabakis G, Suresh M, Amiji M. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert opinion on drug delivery 2016;13(7):987–98.

  69. Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, Pandya P, et al. CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem. 2010;43(4):373–9.

    Article  CAS  PubMed  Google Scholar 

  70. Reeve JG, Rabbitts PH, Twentyman PR. Amplification and expression of mdr1 gene in a multidrug resistant variant of small cell lung cancer cell line NCI-H69. Br J Cancer. 1989;60(3):339–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murata H, Khattar NH, Gu L, Li G. Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett. 2005;223(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  72. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66(2):944–50.

    Article  CAS  PubMed  Google Scholar 

  73. Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007;6(9):1001–5.

    Article  CAS  PubMed  Google Scholar 

  74. Fanini F, Fabbri M. MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Therapeutics. 2016;99(5):485–93.

    Article  CAS  Google Scholar 

  75. Liu M, Zhang X, Hu CF, Xu Q, Zhu HX, Xu NZ. MicroRNA-mRNA functional pairs for cisplatin resistance in ovarian cancer cells. Chin J Cancer. 2014;33(6):285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang L, Nadeem L, Connor K, Xu G. Mechanisms and Therapeutic Targets of microRNA-associated Chemoresistance in Epithelial Ovarian Cancer. Curr Cancer Drug Targets. 2016;16(5):429–41.

    Article  CAS  PubMed  Google Scholar 

  77. van Jaarsveld MT, van Kuijk PF, Boersma AW, Helleman J, van IJcken WF, Mathijssen RH, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14(1):1.

    Article  CAS  Google Scholar 

  78. Chen S, Chen X, Xiu Y, Sun K, Zong Z, Zhao Y. microRNA 490-3P enhances the drug-resistance of human ovarian cancer cells. J Ovarian Res. 2014;7(1):1.

    Article  Google Scholar 

  79. De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E, Peg V, et al. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015;6(35):37269–80.

    PubMed  PubMed Central  Google Scholar 

  80. Sin TK, Wang F, Meng F, Wong S, Cho W, Siu PM, et al. Implications of MicroRNAs in the Treatment of Gefitinib-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci. 2016;17(2):237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yi H, Liu L, Sheng N, Li P, Pan H, Cai L, et al. Synergistic Therapy of Doxorubicin and miR-129-5p with Self-Cross-Linked Bioreducible Polypeptide Nanoparticles Reverses Multidrug Resistance in Cancer Cells. Biomacromolecules. 2016;17(5):1737–47.

    Article  CAS  PubMed  Google Scholar 

  82. Bottai G, Pasculli B, Calin GA, Santarpia L. Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opin Biol Ther. 2014;14(11):1667–83.

    Article  CAS  PubMed  Google Scholar 

  83. Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res. 2012;72(21):5463–72.

    Article  CAS  PubMed  Google Scholar 

  84. Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Controlled Release. 2013;172(3):962–74.

    Article  CAS  Google Scholar 

  86. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    Article  CAS  PubMed  Google Scholar 

  87. Bernardo BC, Gao X, Tham YK, Kiriazis H, Winbanks CE, Ooi JY, et al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One. 2014;9(2):e90337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci. 2011;104:563–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  91. Di Martino MT, Campani V, Misso G, Cantafio MEG, Gullà A, Foresta U, et al. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 2014;9(2):e90005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ramanathan RK, Hamburg SI, Halfdanarson TR, Borad M. A Phase I/II Dose Escalation Study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors, with an expansion cohort of patients with NET or ACC. Pancreas. 2014;43:502–1502.

    Google Scholar 

  93. Ananta JS, Paulmurugan R, Massoud TF. Tailored Nanoparticle Codelivery of antimiR-21 and antimiR-10b Augments Glioblastoma Cell Kill by Temozolomide: Toward a “Personalized” Anti-microRNA Therapy. Mol Pharm. 2016;13(9):3164–75.

    Article  CAS  PubMed  Google Scholar 

  94. Chowdhury SM, Wang T, Bachawal S, Devulapally R, Choe JW, Elkacem LA, et al. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J Controlled Release. 2016;238:272–80.

    Article  CAS  Google Scholar 

  95. Jang E, Kim E, Son H, Lim E, Lee H, Choi Y, et al. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy. Biomaterials. 2016;105:12–24.

    Article  CAS  PubMed  Google Scholar 

  96. Yang T, Cui F, Choi M, Cho J, Chung S, Shim C, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1):317–26.

    Article  CAS  PubMed  Google Scholar 

  97. Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, et al. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomed: Nanotechnol, Biol Med. 2012;8(1):103–11.

    CAS  Google Scholar 

  98. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013;31(7):577-577

  99. Bader AG. miR-34–a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene. 2015;34(27):3547–55.

    Article  CAS  PubMed  Google Scholar 

  101. Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev. 2015;81:142–60.

    Article  CAS  PubMed  Google Scholar 

  102. Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, et al. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm. 2012;9(3):470–81.

    Article  CAS  PubMed  Google Scholar 

  103. Son S, Jang J, Youn H, Lee S, Lee D, Lee Y, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32(21):4968–75.

    Article  PubMed  CAS  Google Scholar 

  104. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A. 2012;109(26):E1695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm. 2012;9(5):1481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ryu D, Kim HA, Song H, Kim S, Lee M. Amphiphilic peptides with arginines and valines for the delivery of plasmid DNA. J Cell Biochem. 2011;112(5):1458–66.

    Article  CAS  PubMed  Google Scholar 

  107. Oh B, Song H, Lee D, Oh J, Kim G, Ihm S, et al. Anti-cancer effect of R3V6 peptide-mediated delivery of an anti-microRNA-21 antisense-oligodeoxynucleotide in a glioblastoma animal model. J Drug Target 2016:1-8

  108. Ashley CE, Carnes EC, Epler KE, Padilla DP, Phillips GK, Castillo RE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano. 2012;6(3):2174–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–8.

    Article  CAS  PubMed  Google Scholar 

  110. Bakhshinejad B. Phage display and targeting peptides: surface functionalization of nanocarriers for delivery of small non-coding RNAs. Front Genet. 2015;6:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lee HJ, Namgung R, Kim WJ, Kim JI, Park I. Targeted delivery of microRNA-145 to metastatic breast cancer by peptide conjugated branched PEI gene carrier. Macromol Res. 2013;21(11):1201–9.

    Article  CAS  Google Scholar 

  112. Kuo C, Leon L, Chung EJ, Huang R, Sontag TJ, Reardon CA, et al. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J Mater Chem B. 2014;2(46):8142–53.

    Article  CAS  Google Scholar 

  113. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.

    Article  CAS  PubMed  Google Scholar 

  114. Ofek P, Calderón M, Mehrabadi FS, Krivitsky A, Ferber S, Tiram G, et al. Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12(7):2201–14.

  115. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 2007;11(5):431–45.

    Article  CAS  PubMed  Google Scholar 

  116. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27(7):643–51.

    Article  CAS  PubMed  Google Scholar 

  117. Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 2015;6(27):23480–95.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24(12):3128–35.

    Article  CAS  PubMed  Google Scholar 

  119. Glover AR, Zhao JT, Gill AJ, Weiss J, Mugridge N, Kim E, et al. MicroRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget. 2015;6(34):36675–88.

    PubMed  PubMed Central  Google Scholar 

  120. Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016;8(8):1079–85.

  121. Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 2002;110(5):563–74.

    Article  CAS  PubMed  Google Scholar 

  122. Yoo BH, Bochkareva E, Bochkarev A, Mou TC, Gray DM. 2′-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004;32(6):2008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hyrup B, Nielsen PE. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem. 1996;4(1):5–23.

    Article  CAS  PubMed  Google Scholar 

  124. Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A. 2000;97(10):5633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Seminars in cancer biology: Elsevier; 2008.

  126. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  CAS  PubMed  Google Scholar 

  127. Li W, Ma N, Ong L, Kaminski A, Skrabal C, Ugurlucan M, et al. Enhanced thoracic gene delivery by magnetic nanobead‐mediated vector. J Gene Med. 2008;10(8):897–909.

    Article  CAS  PubMed  Google Scholar 

  128. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel S, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther. 2006;17(7):751–66.

    Article  CAS  PubMed  Google Scholar 

  129. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14(5):369–81.

    Article  CAS  PubMed  Google Scholar 

  130. Xiong Y, Fang J, Yun J, Yang J, Zhang Y, Jia W, et al. Effects of MicroRNA‐29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51(3):836–45.

    CAS  PubMed  Google Scholar 

  131. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Conde J, Oliva N, Atilano M, Song HS, Artzi N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nature materials 2016;15(3):353–63.

  133. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.

    Article  CAS  PubMed  Google Scholar 

  134. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 2008;105(10):3903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580–7.

    Article  CAS  PubMed  Google Scholar 

  136. Cevher E, Sezer AD, Çağlar EŞ. Gene delivery systems: recent progress in viral and non-viral therapy. : INTECH Open Access Publisher; 2012.

  137. Deng Y, Yang Y, Wang S, Li F, Liu M, Hua Q, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and allergen-induced inflammation by targeting GATA-3. PLoS One. 2015;10(9):e0139322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lee W, Loo C, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharmaceutical Sci. 2015;10(6):481–9.

    Article  Google Scholar 

  139. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    Article  CAS  PubMed  Google Scholar 

  140. Beg MS, Brenner A, Sachdev J, Ejadi S, Borad M, Kang Y, et al. Abstract C43: Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors. Molecular Cancer Therapeutics 2015;14(12 Supplement 2):C43-C43

  141. Mirna Therapeutics I. Mirna Therapeutics Halts Phase 1 Clinical Study of MRX34. 2016; Available at: http://www.businesswire.com/news/home/20160920006814/en/Mirna-Therapeutics-Halts-Phase-1-Clinical-Study. Accessed 9/20, 2016.

  142. Mirna Therapeutics I. Mirna Therapeutics Reports Third Quarter 2016 Financial Results and MRX34 Clinical Program Updates . 2016; Available at: http://www.nasdaq.com/press-release/mirna-therapeutics-reports-third-quarter-2016-financial-results-and-mrx34-clinical-program-updates-20161110-01443. Accessed 12/20, 2016.

  143. Kao SC, Fulham M, Wong K, Cooper W, Brahmbhatt H, MacDiarmid J, et al. A significant metabolic and radiological response after a novel targeted MicroRNA-based treatment approach in malignant pleural mesothelioma. Am J Respir Crit Care Med. 2015;191(12):1467–9.

    Article  PubMed  Google Scholar 

  144. Takeshita F, Patrawala L, Osaki M, Takahashi R, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.

    Article  CAS  PubMed  Google Scholar 

  145. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  CAS  Google Scholar 

  146. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.

    Article  CAS  PubMed  Google Scholar 

  147. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Velagapudi SP, Cameron MD, Haga CL, Rosenberg LH, Lafitte M, Duckett DR, et al. Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A. 2016;113(21):5898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–38.

    Article  CAS  PubMed  Google Scholar 

  150. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42(1):609–21.

    Article  CAS  PubMed  Google Scholar 

  152. Ree M, Meer A, Nuenen A, Bruijne J, Ottosen S, Janssen H, et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA‐122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther. 2016;43(1):102–13.

    Article  PubMed  CAS  Google Scholar 

  153. Thakral S, Ghoshal K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Current Gene Therapy. 2015;15(2):142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nassirpour R, Mehta PP, Baxi SM, Yin M. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One. 2013;8(4):e62170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li Y, Van Pham L, Uzcategui N, Bukh J. Functional analysis of microRNA-122 binding sequences of hepatitis C virus and identification of variants with high resistance against specific antagomir. J Gen Virol 2016;97:1381–94.

  157. Nana-Sinkam SP, Croce CM. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol. 2014;15(9):1.

    Article  CAS  Google Scholar 

  158. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin S, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):1.

    Article  CAS  Google Scholar 

  159. Gilad S, Lithwick-Yanai G, Barshack I, Benjamin S, Krivitsky I, Edmonston TB, et al. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J Mol Diagnostics. 2012;14(5):510–7.

    Article  CAS  Google Scholar 

  160. Pentheroudakis G, Pavlidis N, Fountzilas G, Krikelis D, Goussia A, Stoyianni A, et al. Novel microRNA-based assay demonstrates 92% agreement with diagnosis based on clinicopathologic and management data in a cohort of patients with carcinoma of unknown primary. Mol Cancer. 2013;12(1):1.

    Article  CAS  Google Scholar 

  161. Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafà R, Magri E, et al. MicroRNA profiling for the identification of cancers with unknown primary tissue‐of‐origin. J Pathol. 2011;225(1):43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56.

    Article  CAS  PubMed  Google Scholar 

  165. Chen L, Hsu W, Tseng Y, Liu D, Weng C. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer. 2016;16(1):431.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kaitu’u-Lino TJ, Pattison S, Ye L, Tuohey L, Sluka P, MacDiarmid J, et al. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology. 2013;154(2):911–9.

    Article  PubMed  CAS  Google Scholar 

  167. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. OncoGenex Pharmaceuticals I. OncoGenex Announces Results from the Phase 3 AFFINITY Trial of Custirsen in Men with Metastatic Castrate-Resistant Prostate Cancer. 2016; Available at: http://ir.oncogenex.com/releasedetail.cfm?ReleaseID=984464. Accessed 12/21, 2016.

  169. Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015;43(19):9158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, et al. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc 2016;91(2):409–28.

  171. Berindan Neagoe I. Monroig PdC, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64(5):311–36.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie Blenkiron.

Ethics declarations

Funding

TR is supported by funding from the Translational Medicine Trust, University of Auckland. GR is supported by the Asbestos Diseases Research Foundation (ADRF) and holds grants from the Cancer Institute NSW, Cancer Council NSW and the Dust Diseases Authority. CB is supported by funding from the Translational Medicine Trust, University of Auckland and Ministry of Business, Innovation and Employment (MBIE).

Conflict of Interest

GR holds a US patent 9,006,200 “microRNA-based approach to treating malignant pleural mesothelioma”, the subject of the TargomiR trial NCT02369198 mentioned in the manuscript. TR and CB declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robb, T., Reid, G. & Blenkiron, C. Exploiting microRNAs As Cancer Therapeutics. Targ Oncol 12, 163–178 (2017). https://doi.org/10.1007/s11523-017-0476-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0476-7

Keywords

Navigation