Skip to main content
Log in

Effect of Targeting Clusterin Using OGX-011 on Antitumor Activity of Temsirolimus in a Human Renal Cell Carcinoma Model

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

It has not been well documented that the modulation of stress response mediates the efficacy of the mammalian target of rapamycin (mTOR) inhibitor in renal cell carcinoma (RCC).

Objective

The objective of this study was to investigate whether the activity of the mTOR inhibitor temsirolimus against RCC could be enhanced by OGX-011, an antisense oligodeoxynucleotide (ODN) targeting the stress-activated chaperone clusterin.

Methods

We investigated the efficacy of combined treatment with temsirolimus plus OGX-011 in a human RCC Caki-1 model focusing on the effects on apoptotic and autophagic pathways.

Results

Although clusterin expression was increased by temsirolims, additional treatment of Caki-1 with OGX-011 significantly inhibited clusterin upregulation (p < 0.05). Combined treatment of temsirolimus and OGX-011 synergistically enhanced the sensitivity of Caki-1 to temsirolimus (p < 0.01), reducing the IC50 by approximately 50 %. Apoptotic changes were marked in Caki-1 following combined treatment with a sublethal dose of temsirolimus and OGX-011, accompanying the significant downregulation of Mcl-1 (p < 0.05), but not with either agent alone. Furthermore, this combined treatment markedly blocked the temsirolimus-induced activation of autophagy in Caki-1 (p < 0.01). In-vivo systemic administration of temsirolimus plus OGX-011 significantly inhibited the growth of Caki-1 tumors compared with that of temsirolimus plus control ODN (p < 0.05).

Conclusions

Silencing of clusterin using OGX-011 resulted in the further enhancement of proapoptotic activity as well as the marked attenuation of the autophagic pathway induced by temsirolimus in a human RCC model. Thus, the combined use of OGX-011 could be a promising strategy through the enhanced cytotoxic activity of temsirolimus against RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Figlin R, Sternberg C, Wood CG. Novel agents and approaches for advanced renal cell carcinoma. J Urol. 2012;188:707–15.

    Article  CAS  PubMed  Google Scholar 

  2. Bellmunt J, Montagut C, Albiol S, Carles J, Maroto P, Orsola A. Present strategies in the treatment of metastatic renal cell carcinoma: an update on molecular targeting agents. BJU Int. 2007;99:274–80.

    Article  CAS  PubMed  Google Scholar 

  3. Fasolo A, Sessa C. Targeting mTOR pathways in human malignancies. Curr Pharm Des. 2012;18:2766–77.

    Article  CAS  PubMed  Google Scholar 

  4. Shor B, Zhang WG, Toral-Barza L, Lucas J, Abraham RT, Gibbons JJ, et al. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 2008;68:2934–43.

    Article  CAS  PubMed  Google Scholar 

  5. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  CAS  PubMed  Google Scholar 

  6. Voss MH, Molina AM, Motzer RJ. mTOR inhibitors in advanced renal cell carcinoma. Hematol Oncol Clin North Am. 2011;25:835–52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miyake H, Harada K, Kumano M, Fujisawa M. Assessment of efficacy, safety and quality of life of 55 patients with metastatic renal cell carcinoma treated with temsirolimus: a single-center experience in Japan. Int J Clin Oncol. 2014;19:679–85.

    Article  CAS  PubMed  Google Scholar 

  8. Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W, et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ. 2006;13:12–9.

    Article  CAS  PubMed  Google Scholar 

  9. Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol. 2012;44:1646–56.

    Article  CAS  PubMed  Google Scholar 

  10. Miyake H, Muramaki M, Kurahashi T, Yamanaka K, Hara I, Gleave M, et al. Expression of clusterin in prostate cancer correlates with Gleason score but not with prognosis in patients undergoing radical prostatectomy without neoadjuvant hormonal therapy. Urology. 2006;68:609–14.

    Article  PubMed  Google Scholar 

  11. Miyake H, Gleave M, Kamidono S, Hara I. Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology. 2002;59:150–4.

    Article  PubMed  Google Scholar 

  12. Zoubeidi A, Chi K, Gleave M. Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin Cancer Res. 2010;16:1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyake H, Yamanaka K, Muramaki M, Hara I, Gleave ME. Therapeutic efficacy of adenoviral-mediated p53 gene transfer is synergistically enhanced by combined use of antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Neoplasia. 2005;7:171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyake H, Nelson C, Rennie PS, Gleave ME. Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res. 2000;60:170–6.

    CAS  PubMed  Google Scholar 

  15. Kurahashi T, Muramaki M, Yamanaka K, Hara I, Miyake H. Expression of the secreted form of clusterin protein in renal cell carcinoma as a predictor of disease extension. BJU Int. 2005;96:895–9.

    Article  CAS  PubMed  Google Scholar 

  16. Miyake H, Hara S, Arakawa S, Kamidono S, Hara I. Over expression of clusterin is an independent prognostic factor for nonpapillary renal cell carcinoma. J Urol. 2002;167:703–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zellweger T, Miyake H, July LV, Akbari M, Kiyama S, Gleave ME. Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clusterin. Neoplasia. 2001;3:360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kususda Y, Miyake H, Gleave ME, Fujisawa M. Clusterin inhibition using OGX-011 synergistically enhances antitumour activity of sorafenib in a human renal cell carcinoma model. Br J Cancer. 2012;106:1945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Asaaed S, Winquist E. Custirsen (OGX-011): clusterin inhibitor in metastatic prostate cancer. Curr Oncol Rep. 2013;15:113–8.

    Article  CAS  PubMed  Google Scholar 

  20. Terakawa T, Miyake H, Kusuda Y, Fujisawa M. Expression level of vascular endothelial growth factor receptor-2 in radical nephrectomy specimens as a prognostic predictor in patients with metastatic renal cell carcinoma treated with sunitinib. Urol Oncol. 2013;31:493–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154:1269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ladoire S, Chaba K, Martins I, Sukkurwala AQ, Adjemian S, Michaud M, et al. Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy. 2012;8:1175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roulin D, Waselle L, Dormond-Meuwly A, Dufour M, Demartines N, Dormond O. Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib. Mol Cancer. 2011;10:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rindi G, Klöppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol. 2011;8:528–39.

    Article  CAS  PubMed  Google Scholar 

  26. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 2010;584:1374–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LW, et al. Clusterin facilitates COMMD1 and I-kB degradation to enhance NF-kB activity in prostate cancer cells. Mol Cancer Res. 2010;8:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol. 2005;7:909–15.

    Article  CAS  PubMed  Google Scholar 

  30. Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E, Fazli L, et al. Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate-resistant prostate cancer. Cancer Res. 2011;71:5838–49.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Yang J, Yuan Y, Xia Z, Chen M, Xie L, et al. Regulation of Mcl-1 by constitutive activation of NF-kB contributes to cell viability in human esophageal squamous cell carcinoma cells. BMC Cancer. 2014;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10:1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010;22:132–9.

    Article  CAS  PubMed  Google Scholar 

  35. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285:13107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsueh YS, Chang HH, Chiang NJ, Yen CC, Li CF, Chen LT. MTOR inhibition enhances NVP-AUY922-induced autophagy-mediated KIT degradation and cytotoxicity in imatinib-resistant gastrointestinal stromal tumors. Oncotarget. 2014;5:11723–36.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;12:961–7.

    Article  Google Scholar 

  38. Chi KN, Eisenhauer E, Fazli L, Jones EC, Goldenberg SL, Powers J, et al. A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 20-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst. 2005;97:1287–96.

    Article  CAS  PubMed  Google Scholar 

  39. Jackson JK, Gleave ME, Gleave J, Burt HM. The inhibition of angiogenesis by antisense oligonucleotides to clusterin. Angiogenesis. 2005;8:229–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Miyake.

Ethics declarations

Funding

None.

Conflict of Interest

The University of British Columbia has submitted patent applications, listing Hideaki Miyake and Martin Gleave as inventors, on the sequence of OGX-011. This intellectual property has been licensed to OncoGenex Technologies, in which Martin Gleave has founding shares. Masatomo Nishikawa and Masato Fujisawa declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, M., Miyake, H., Gleave, M. et al. Effect of Targeting Clusterin Using OGX-011 on Antitumor Activity of Temsirolimus in a Human Renal Cell Carcinoma Model. Targ Oncol 12, 69–79 (2017). https://doi.org/10.1007/s11523-016-0448-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-016-0448-3

Keywords

Navigation