Skip to main content
Log in

Detection of KIT and PDGFRA mutations in the plasma of patients with gastrointestinal stromal tumor

  • Day-to-Day Practice
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

In subsets of gastrointestinal stromal tumors (GISTs), mutations of the KIT and PDGFRA receptor tyrosine kinases correlate with tumor prognosis and response to tyrosine kinase inhibitors (TKIs). Determining genotypes in TKI-resistant GISTs is challenging due to the potential risks and limitations of repeated biopsies during the course of treatment. We prospectively collected plasma samples from three GIST patients harboring KIT mutations that were detected in tissue DNA. The plasma samples were then analyzed for mutations in KIT, PDGFRA, and BRAF via next-generation sequencing. We were able to identify primary KIT mutations in all plasma samples. Additional mutations, including KIT exon 17 S821F and PDGFRA exon 18 D842V, were detected in the patient-matched plasma samples during follow-up and appeared to result in decreased sensitivity to TKIs. Our results demonstrate an approach by which primary and secondary mutations are readily detected in blood-derived circulating tumor DNA from patients with GIST. These mutations can be used as biomarkers for prediction of treatment response. The identification of a resistance mutation in plasma DNA will allow early change to alternative TKIs or dose escalation of imatinib for optimal patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PW, Raut CP, Riedel RF, Schuetze S, Sundar HM, Trent JC, Wayne JD (2010) NCCN task force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Cancer Netw 8(Suppl 2):S1–S41, quiz S42-44

    CAS  Google Scholar 

  2. Corless CL, Barnett CM, Heinrich MC (2011) Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 11(12):865–878. doi:10.1038/nrc3143

    CAS  PubMed  Google Scholar 

  3. Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, Blackstein ME, Blanke CD, von Mehren M, Brennan MF, Patel S, McCarter MD, Polikoff JA, Tan BR, Owzar K (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104. doi:10.1016/S0140-6736(09)60500-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, Eisenberg BL, von Mehren M, Fletcher CD, Sandau K, McDougall K, Ou WB, Chen CJ, Fletcher JA (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24(29):4764–4774

    Article  CAS  PubMed  Google Scholar 

  5. Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J, von Bubnoff N (2013) Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res 19(17):4854–4867. doi:10.1158/1078-0432.CCR-13-0765

    Article  CAS  PubMed  Google Scholar 

  6. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112. doi:10.1038/nature12065

    Article  CAS  PubMed  Google Scholar 

  7. Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, Siu SS, Chan WC, Chan SL, Chan AT, Lai PB, Chiu RW, Lo YM (2013) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59(1):211–224. doi:10.1373/clinchem.2012.196014

    Article  CAS  PubMed  Google Scholar 

  8. Lee B, Han G, Kwon MJ, Han J, Choi YL (2014) KRAS mutation detection in Non-small cell lung cancer using a peptide nucleic acid-mediated polymerase chain reaction clamping method and comparative validation with next-generation sequencing. Korean J Pathol 48(2):100–107. doi:10.4132/KoreanJPathol.2014.48.2.100

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H, Haschke-Becher E, Garicochea B, Grossmann V, Hanczaruk B, Hebestreit K, Gabriel C, Iacobucci I, Jansen JH, te Kronnie G, van de Locht L, Martinelli G, McGowan K, Schweiger MR, Timmermann B, Vandenberghe P, Young BD, Dugas M, Haferlach T (2011) The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 25(12):1840–1848. doi:10.1038/leu.2011.155

    Article  CAS  PubMed  Google Scholar 

  10. Richardson AL, Iglehart JD (2012) BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res 18(12):3209–3211. doi:10.1158/1078-0432.CCR-12-0871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yoo C, Ryu MH, Na YS, Ryoo BY, Park SR, Kang YK (2014) Analysis of serum protein biomarkers, circulating tumor DNA, and dovitinib activity in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumors. Ann Oncol

  12. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484. doi:10.1038/nrclinonc.2013.110

    Article  CAS  PubMed  Google Scholar 

  13. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N, Vranckx H, Wasag B, Prenen H, Roesel J, Hagemeijer A, Van Oosterom A, Marynen P (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128(2):270–279

    Article  CAS  PubMed  Google Scholar 

  14. Lim KH, Huang MJ, Chen LT, Wang TE, Liu CL, Chang CS, Liu MC, Hsieh RK, Tzen CY (2008) Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med Oncol 25(2):207–213. doi:10.1007/s12032-007-9014-2

    Article  CAS  PubMed  Google Scholar 

  15. Ilie M, Hofman V, Long E, Bordone O, Selva E, Washetine K, Marquette CH, Hofman P (2014) Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2(11):107. doi:10.3978/j.issn.2305-5839.2014.08.11

    PubMed Central  PubMed  Google Scholar 

  16. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958. doi:10.3390/ijms140918925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Mee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G., Bae, B.N., Sohn, B.S. et al. Detection of KIT and PDGFRA mutations in the plasma of patients with gastrointestinal stromal tumor. Targ Oncol 10, 597–601 (2015). https://doi.org/10.1007/s11523-015-0361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0361-1

Keywords

Navigation