Skip to main content
Log in

Imaging applications of nanotechnology in cancer

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Consider a single agent capable of diagnosing cancer, treating it simultaneously and monitoring response to treatment. Particles of this agent would seek cancer cells accurately and destroy them without harming normal surrounding cells. Science fiction or reality? Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology are bringing us closer to the development of dual and multi-functional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. Examples include contrast agents capable of delivering targeted drugs to specific epithelial receptors. This opens the way for targeted chemotherapy which could minimise systemic side-effects, avoid damage to benign tissues and also reduce the therapeutic treatment dose of a drug required. Most of the current research is still at the pre-clinical stage, with very few instances of bench to bedside research. In order to encourage more translational research, a fundamental change is required to consider the current clinical challenges and then look at ways in which nanotechnology can address these.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feynman RP (1959) There’s plenty of room at the bottom. Presented at the Annual Meeting of the American Physical Society, December 29, 1959, California Institute of Technology, Pasadena, CA). http://www.zyvex.com/nanotech/feynman.html

  2. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433

    Article  PubMed  CAS  Google Scholar 

  3. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed 3(5):703–717

    Article  PubMed  CAS  Google Scholar 

  4. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  PubMed  CAS  Google Scholar 

  5. Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4):309–316

    Article  PubMed  CAS  Google Scholar 

  6. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667

    Article  PubMed  CAS  Google Scholar 

  7. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  PubMed  CAS  Google Scholar 

  8. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  PubMed  CAS  Google Scholar 

  9. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  10. Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46(46):8836–8839

    Article  PubMed  CAS  Google Scholar 

  11. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377

    Article  PubMed  CAS  Google Scholar 

  12. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22

    Article  PubMed  Google Scholar 

  13. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  PubMed  CAS  Google Scholar 

  14. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2(2):153–167

    Article  PubMed  CAS  Google Scholar 

  15. Dinh P, Sotiriou C, Piccart MJ (2007) The evolution of treatment strategies: aiming at the target. Breast 16(Suppl 2):S10–S16

    Article  PubMed  Google Scholar 

  16. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  PubMed  CAS  Google Scholar 

  17. Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456

    Article  PubMed  CAS  Google Scholar 

  18. Menon U, Jacobs IJ (2000) Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol 12(1):39–42

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110

    Article  PubMed  Google Scholar 

  20. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  PubMed  Google Scholar 

  21. Harisinghani MG, Weissleder R (2004) Sensitive, noninvasive detection of lymph node metastases. PLoSMed 1(3):e66

    Google Scholar 

  22. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 1(2):209–217

    Article  PubMed  CAS  Google Scholar 

  23. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240

    Article  PubMed  CAS  Google Scholar 

  24. Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20(15):6396–6400

    Article  PubMed  CAS  Google Scholar 

  25. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191

    Article  PubMed  CAS  Google Scholar 

  26. Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50(4):493–496

    Article  PubMed  CAS  Google Scholar 

  27. Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6

    Article  PubMed  CAS  Google Scholar 

  28. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb) 25:3144–3146

    Article  CAS  Google Scholar 

  29. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396

    Article  PubMed  CAS  Google Scholar 

  30. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  PubMed  CAS  Google Scholar 

  31. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  PubMed  CAS  Google Scholar 

  32. Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343

    Article  PubMed  CAS  Google Scholar 

  33. Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007

    Article  PubMed  CAS  Google Scholar 

  34. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665

    Article  PubMed  CAS  Google Scholar 

  35. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X et al (2007) In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  PubMed  CAS  Google Scholar 

  36. Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346

    Article  PubMed  CAS  Google Scholar 

  37. Zoarski GH, Parker JR, Lufkin RB, Harnsberger HR, Rhoda CH (1992) Efficacy of gadoteridol for magnetic resonance imaging of extracranial head and neck pathology. Invest Radiol 27(Suppl 1):S53–S57

    PubMed  Google Scholar 

  38. Vitols S (1991) Uptake of low-density lipoprotein by malignant cells—possible therapeutic applications. Cancer Cells 3(12):488–495

    PubMed  CAS  Google Scholar 

  39. Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD et al (2006) Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8(6):488–498

    Article  PubMed  CAS  Google Scholar 

  40. Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35(Pt 1):61–67

    PubMed  CAS  Google Scholar 

  41. Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW et al (2004) Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96(9):703–708

    Article  PubMed  CAS  Google Scholar 

  42. Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252

    Article  PubMed  CAS  Google Scholar 

  43. Vogel A (1997) Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys Med Biol 42(5):895–912

    Article  PubMed  CAS  Google Scholar 

  44. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  PubMed  Google Scholar 

  45. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365

    Article  PubMed  CAS  Google Scholar 

  46. Landmark KJ, Dimaggio S, Ward J, Kelly C, Vogt S, Hong S et al (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-conjugated dendrimers. ACS Nano 2(4):773–783

    Article  PubMed  CAS  Google Scholar 

  47. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2(1):23–39

    Article  PubMed  CAS  Google Scholar 

  48. Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY et al (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745

    Article  PubMed  CAS  Google Scholar 

  49. Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238

    Article  PubMed  CAS  Google Scholar 

  50. Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81(19):5985–5988

    Article  PubMed  CAS  Google Scholar 

  51. Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222

    Article  PubMed  CAS  Google Scholar 

  52. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  PubMed  CAS  Google Scholar 

  53. Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomed 3(4):579–592

    Article  PubMed  CAS  Google Scholar 

  54. Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154

    Article  PubMed  CAS  Google Scholar 

  55. Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45(48):8160–8162

    Article  PubMed  CAS  Google Scholar 

  56. Joshi T, Douek M, Pankhurst QA, Hattersley S, Brazdeikis A, Hall-Craggs M, De Vita E, Bainbridge A, Sainsbury R, Sharma A (2007) Magnetic nanoparticles for detecting sentinel lymph nodes. Eur J Surg Oncol 33(9):1135

    Google Scholar 

  57. Statistical Information Team (2009) Cancer research UK, breast cancer. http://info.cancerresearchuk.org/cancerstats/

  58. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97

    Article  PubMed  Google Scholar 

  59. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  PubMed  CAS  Google Scholar 

  60. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  PubMed  CAS  Google Scholar 

  61. Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48(15):2759–2763

    Article  PubMed  CAS  Google Scholar 

  62. Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009) Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69(3):1182–1189

    Article  PubMed  CAS  Google Scholar 

  63. Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F et al (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25(4):145–152

    Article  PubMed  CAS  Google Scholar 

  64. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423

    Article  PubMed  CAS  Google Scholar 

  65. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  PubMed  CAS  Google Scholar 

  66. Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274

    Article  PubMed  CAS  Google Scholar 

  67. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008

    Article  PubMed  CAS  Google Scholar 

  68. Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911

    Article  PubMed  CAS  Google Scholar 

  69. Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM et al (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63

    Article  PubMed  CAS  Google Scholar 

  70. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Douek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunasekera, U.A., Pankhurst, Q.A. & Douek, M. Imaging applications of nanotechnology in cancer. Targ Oncol 4, 169–181 (2009). https://doi.org/10.1007/s11523-009-0118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-009-0118-9

Keywords

Navigation