Skip to main content

Advertisement

Log in

A robust approach for exploring hemodynamics and thrombus growth associations in abdominal aortic aneurysms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Longitudinal studies of vascular diseases often need to establish correspondence between follow-up images, as the diseased regions may change shape over time. In addition, spatial data structures should be taken into account in the statistical analyses to avoid inferential errors. This study investigates the association between hemodynamics and thrombus growth in abdominal aortic aneurysms (AAAs) while emphasizing on the abovementioned methodological issues. Six AAA surfaces and their follow-ups were three-dimensionally reconstructed from computed-tomography images. AAA surfaces were mapped onto a rectangular grid which allowed identification of corresponding regions between follow-ups. Local thrombus thickness was measured at initial and follow-up surfaces and computational fluid dynamic simulations provided time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time. Six Bayesian regression models, which account for spatially correlated measurements, were employed to explore associations between hemodynamics and thrombus growth. Results suggest that spatial regression models based on TAWSS and OSI offer superior predictive performance for thrombus growth relative to alternative specifications. Ignoring the spatial data structure may lead to improper assessment with regard to predictor significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adamson RH (1993) Microvascular endothelial cell shape and size in situ. Microvasc Res 46:77–88. doi:10.1006/mvre.1993.1036

    Article  CAS  PubMed  Google Scholar 

  2. Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23:704–713

    Article  PubMed  Google Scholar 

  3. Arzani A, Shadden SC (2016) Characterizations and correlations of wall shear stress in aneurysmal flow. J Biomech Eng. doi:10.1115/1.4032056

    PubMed  Google Scholar 

  4. Arzani A, Suh GY, Dalman RL, Shadden SC (2014) A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 307:H1786–H1795. doi:10.1152/ajpheart.00461.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baek S, Zambrano BA, Choi J, Lim C-Y (2014) Growth prediction of abdominal aortic aneurysms and its association of intraluminal thrombus. In: 11th world congress on computational mechanics, Barcelona, Spain, July 20–25, 2014

  6. Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis of spatial data, 2nd edn. Chapman & Hall/CRC Monographs on Statistics and Applied Probability

  7. Biasetti J, Gasser TC, Auer M, Hedin U, Labruto F (2010) Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann Biomed Eng 38:380–390. doi:10.1007/s10439-009-9843-6

    Article  PubMed  Google Scholar 

  8. Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J R Soc Interface 8:1449–1461. doi:10.1098/rsif.2011.0041

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colantuoni G, Hellums JD, Moake JL, Alfrey CP Jr (1977) The response of human platelets to shear stress at short exposure times. Trans Am Soc Artif Intern Organs 23:626–631

    Article  CAS  PubMed  Google Scholar 

  10. De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput 48:371–380. doi:10.1007/s11517-010-0583-4

    Article  PubMed  Google Scholar 

  11. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  12. Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43:570–576; discussion 576. doi:10.1016/j.jvs.2005.10.072

  13. Doyle B, Miller K, Wittek A, Nielsen PMF (2014) From detection to rupture: a serial computational fluid dynamics case study of a rapidly expanding, patient-specific, ruptured abdominal aortic aneurysm. In: Springer (ed) Computational biomechanics for medicine, pp 53–68

  14. Folkesson M, Silveira A, Eriksson P, Swedenborg J (2011) Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218:294–299. doi:10.1016/j.atherosclerosis.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Fraser KH, Meagher S, Blake JR, Easson WJ, Hoskins PR (2008) Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med Biol 34:73–80. doi:10.1016/j.ultrasmedbio.2007.06.015

    Article  PubMed  Google Scholar 

  16. Hansen KB, Arzani A, Shadden SC (2015) Mechanical platelet activation potential in abdominal aortic aneurysms. J Biomech Eng 137:041005. doi:10.1115/1.4029580

    Article  PubMed  Google Scholar 

  17. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82

    Article  CAS  PubMed  Google Scholar 

  18. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286:H1916–H1922. doi:10.1152/ajpheart.00897.2003

    Article  CAS  PubMed  Google Scholar 

  19. Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64:325–334. doi:10.1198/tast.2010.10052

    Article  Google Scholar 

  20. Hughes J (2014) ngspatial: a package for fitting the centered autologistic and sparse spatial generalized linear mixed models for areal data. R J 6:81–95

    Google Scholar 

  21. Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B 75:139–159. doi:10.1111/j.1467-9868.2012.01041.x

    Article  Google Scholar 

  22. Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38:1288–1313. doi:10.1007/s10439-010-9949-x

    Article  PubMed  Google Scholar 

  23. Les AS, Yeung JJ, Schultz GM, Herfkens RJ, Dalman RL, Taylor CA (2010) Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc Eng Technol. doi:10.1007/s13239-010-0004-8

    PubMed  PubMed Central  Google Scholar 

  24. Lesaffre E, Lawson AB (2012) Bayesian Biostatistics

  25. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Article  CAS  PubMed  Google Scholar 

  26. Martufi G, Auer M, Roy J, Swedenborg J, Sakalihasan N, Panuccio G, Gasser TC (2013) Multidimensional growth measurements of abdominal aortic aneurysms. J Vasc Surg 58:748–755. doi:10.1016/j.jvs.2012.11.070

    Article  PubMed  Google Scholar 

  27. Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J (2008) Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol 295:H736–H742. doi:10.1152/ajpheart.01156.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES (2006) Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech 39:3010–3016. doi:10.1016/j.jbiomech.2005.10.021

    Article  PubMed  Google Scholar 

  29. Ramstack JM, Zuckerman L, Mockros LF (1979) Shear-induced activation of platelets. J Biomech 12:113–125

    Article  CAS  PubMed  Google Scholar 

  30. Rayz VL, Boussel L, Ge L, Leach JR, Martin AJ, Lawton MT, McCulloch C, Saloner D (2010) Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 38:3058–3069. doi:10.1007/s10439-010-0065-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reich BJ, Hodges JS, Zadnik V (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62:1197–1206. doi:10.1111/j.1541-0420.2006.00617

    Article  PubMed  Google Scholar 

  32. Salsac AV, Sparks SR, Lasheras JC (2004) Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann Vasc Surg 18:14–21. doi:10.1007/s10016-003-0101-3

    Article  PubMed  Google Scholar 

  33. Silver AE, Vita JA (2006) Shear-stress-mediated arterial remodeling in atherosclerosis: too much of a good thing? Circulation 113:2787–2789. doi:10.1161/CIRCULATIONAHA.106.634378

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stenbaek J, Kalin B, Swedenborg J (2000) Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 20:466–469. doi:10.1053/ejvs.2000.1217

    Article  CAS  PubMed  Google Scholar 

  35. Szymanski MP, Metaxa E, Meng H, Kolega J (2008) Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann Biomed Eng 36:1681–1689. doi:10.1007/s10439-008-9540-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taylor CA, Hughes TJ, Zarins CK (1999) Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg 29:1077–1089

    Article  CAS  PubMed  Google Scholar 

  37. Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B (2001) Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol 25:133–142

    Article  CAS  PubMed  Google Scholar 

  38. Valant AZ, Ziberna L, Papaharilaou Y, Anayiotos A, Georgiou GC (2011) The influence of temperature on rheological properties of blood mixtures with different volume expanders-implications in numerical arterial hemodynamics simulations. Rheol Acta 50:389–402. doi:10.1007/s00397-010-0518-x

    Article  Google Scholar 

  39. Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW (2001) Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 34:291–299. doi:10.1067/mva.2001.114813

    Article  CAS  PubMed  Google Scholar 

  40. Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604

    Article  PubMed  Google Scholar 

  41. Wurzinger LJ, Opitz R, Blasberg P, Schmid-Schonbein H (1985) Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb Haemost 54:381–386

    CAS  PubMed  Google Scholar 

  42. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128. doi:10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  43. Zambrano BA, Gharahi H, Lim C, Jaberi FA, Choi J, Lee W, Baek S (2016) Association of intraluminal thrombus, hemodynamic forces, and abdominal aortic aneurysm expansion using longitudinal CT images. Ann Biomed Eng 44:1502–1514. doi:10.1007/s10439-015-1461-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financially supported by the Action “Supporting Postdoctoral Researchers,” co-financed by the European Social Fund (ESF) and the Greek State (LS7_2224). The authors would also like to thank BETA CAE Systems S.A. (Thessaloniki, Greece) for their advice and guidance during the hexahedral meshing using ANSA software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Papaharilaou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzirakis, K., Kamarianakis, Y., Metaxa, E. et al. A robust approach for exploring hemodynamics and thrombus growth associations in abdominal aortic aneurysms. Med Biol Eng Comput 55, 1493–1506 (2017). https://doi.org/10.1007/s11517-016-1610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1610-x

Keywords

Navigation